Диалоги (апрель 2003 г.)
Шрифт:
И вот когда мы говорим о том, что достигаем какого-то расстояния, фактически реально это означает, что мы наблюдаем процесс с какой-то передачей импульса. И процесс с такой передачей импульса, по нашим теоретическим представлениям, отвечает тому, что мы достигаем каких-то расстояний. Так вот, после примерно 10 в минус 8-й, вся информация о пространстве-времени – это уже косвенная информация, мы ничего там непосредственно глазом или микроскопом увидеть не можем. И на этой таблице всё хорошо изображено, потому что там слева изображены приборы, которыми меряются эти расстояния, и в физике микромира там уже ускоритель. Ускоритель – это прибор для измерения расстояний в микромире.
Э.Б. Может быть, мы тогда вкратце опишем эту Стандартную Модель, чтобы было понятно, о чём,
В самой верхней части этой картинки показано наше общее представление о веществе. Как все мы хорошо знаем, вещество состоит из молекул, молекулы из атомов, атомы состоят из ядер, вокруг которых вращаются электроны, расположенные на определённых электронных оболочках. А ядра образованы из так называемых адронов – в основном, это протоны и нейтроны. Каждый из протонов и нейтронов, в свою очередь, состоит из ещё более мелких частиц, которые называются кварки. И эти кварки склеены внутри протона или нейтрона за счёт так называемых сильных взаимодействий, которые осуществляются путём обмена между этими кварками и антикварками частицами, которые называются глюоны, от английского слова Glue – клей. Вот эти глюоны склеивают кварки между собой в адроны.
Мы все знаем очень хорошо, что в природе существуют четыре вида сил. Это мы все знаем с наших школьных лет – это сильные, слабые, электромагнитные и гравитационные взаимодействия. О сильных взаимодействиях мы буквально только что упомянули, и с точки зрения Стандартной Модели, это силы, осуществляемые посредством обмена глюонами, именно это и есть фундаментальные сильные взаимодействия.
Те же взаимодействия, которые в ядре приводят к тому, что протоны и нейтроны удерживаются внутри ядер, так называемые ядерные силы – это уже как бы вторичные по отношению к тем первичным фундаментальным сильным взаимодействиям силы. Ядерные силы возникают из-за того, что протоны и нейтроны – это протяжённые объекты. И каждый кварк обладает так называемым цветом – это специальное квантовое число или заряд, и, собственно говоря, обладание этим зарядом и приводит к взаимодействию посредством обмена глюоном. Следующий вид взаимодействий – это взаимодействия электромагнитные, которые все мы хорошо знаем из повседневной жизни. Их роль – образовывать атомы, притягивая электроны и ядра друг к другу. Взаимодействие, менее известное для широкой аудитории, но, конечно, очень хорошо известное специалистам – это слабое взаимодействие, которое ответственно за то, что ряд частиц в природе нестабилен, в частности, нейтрон. Если нейтрон находится в свободном состоянии, он распадается в протон, электрон и электронное антинейтрино, но внутри ядер ему энергетически более выгодно оставаться свободным, оставаться нераспавшимся, потому что это наиболее выгодная энергетическая конфигурация.
И.В. Здесь проявляется взаимодействие электромагнитных и слабых сил, потому что если электрон станет протоном в ядре, то взаимодействие одинаково заряженных протонов приведёт к увеличению энергии ядра.
Э.Б. Приведёт к увеличению энергии, поэтому в ядре нейтрон стабилен, и может показаться, что слабые взаимодействия вроде бы и не очень-то важны. Но оказывается, что слабые взаимодействия крайне важны, и в частности, процессы на Солнце, например, углеродно-водородный солнечный цикл, главный солнечный цикл, имеет свою первооснову в слабых взаимодействиях. Таким образом, слабые взаимодействия приводят к выделению энергии на Солнце. Если бы этой энергии не было, то и мы бы тут вряд ли существовали бы.
И последний вид сил, которые окружают нас – это гравитационные взаимодействия, уникально слабые по сравнению со всеми остальными видами взаимодействий. Строго говоря, гравитационные взаимодействия в схему Стандартной Модели не вписываются и это одна из проблем Стандартной Модели.
А.Г. Что мешает создать единую теорию.
Э.Б. Абсолютно правильно. Мешает и то, что это уникально слабая сила по сравнению с другими. Это, собственно говоря, и составляет проблему – как эту силу тоже включить в единую схему. Современные представления,
И.В. Я бы хотел ещё добавить, что Стандартная Модель уже в каком-то смысле есть объединённая теория. Пока гравитационные взаимодействия вообще не входят в Стандартную Модель, но считается, что в Стандартную Модель входят сильные взаимодействия, электромагнитные и слабые. Так вот электромагнитные взаимодействия уже входят в Стандартную Модель некоторым объединённым образом…
Э.Б. Со слабыми взаимодействиями.
И.В. Со слабыми взаимодействиями, да, и эти взаимодействия получили название электрослабых. Поэтому Стандартная Модель – это уже какой-то шаг по пути объединения, и желательно двигаться дальше в этом направлении.
Э.Б. Всё зависит от того энергетического масштаба, на котором мы смотрим на эти силы. То понятие, которое нам потребуется сегодня – это ГэВ. ГэВ – это 10 в 9-й электрон-Вольт. И, в частности, в этих единицах измеряются массы протона и нейтрона, это грубая оценка, но, тем не менее, она вполне достаточна для нас.
И.В. Масса протона и нейтрона – это примерно один вес.
Э.Б. Массы протона и нейтрона примерно одинаковые, это примерно один ГэВ. Кварки и лептоны – это те составляющие кирпичики, из которых весь наш мир построен, и из этой схемы видно, что кварки и лептоны делятся на три поколения. Я замечу, что все эти частицы, которые указаны в таблице, уже были открыты экспериментально. Всё это не просто разговоры, всё это померяно и найдено в конкретных экспериментах. В частности, последний ТОП, или Т-кварк с массой 175 ГэВ, это 175 протонов, грубо говоря. Только в отличие от ядра Стандартной Модели размер этого Т-кварка пока не разрешён. Он, по крайней мере, 10 в минус 18-й сантиметра, или что-то в этом духе. И никакой структуры не имеющий.
А.Г. То есть, вот эти символы, которыми здесь изображаются лептоны и кварки, не должны вводить нас в заблуждение. Потому что здесь это некие шарики, почти твёрдые тела, а на самом деле это далеко не так.
И.В. Просто мы пытались так представить их относительные массы.
Э.Б. Так мы пытались представить относительные массы, но не размеры. С точки зрения размеров в Стандартной Модели всё это точечноподобные частицы. И это тоже, на самом деле, одна из загадок Стандартной Модели.
Как понять, что Т-кварк с одной стороны имеет массу 175, а это чуть меньше массы ядра золота, но при этом остаётся точечным объектом? В то время как в ядре золота собраны 190 протонов и нейтронов, и это весьма и весьма большое образование. Вот вкратце структура.
Но может быть, стоит упомянуть об этом открытии Т-кварка? Просто чтобы информацию дать, потому что это совсем недавнее открытие, оно состоялось в 95-м году на американском коллайдере «Тэватрон» в Брукхейвене, в Фермилабе. На этом коллайдере сталкивались пучки протонов и антипротонов. Может быть, картинку номер три нам покажут? Вот видите, здесь изображено, как протон с зарядом плюс единица сталкивается с антипротоном с зарядом минус единица. Тогда те кварки и глюоны, которые образуют этот протон, сталкиваются между собой, и в результате рождается пара кварков Т и анти-Т. Эта пара кварков Т и анти-Т распадается в W-бозон и B-кварк, в W-бозон и анти B-кварк, которые дальше распадаются соответственно в дубль W плюс или дубль W минус бозоны (это переносчики слабых взаимодействий) и в один из лептонов или кварков, указанных выше.
Лептон регистрируется, нейтрино проявляется как недостающая энергия в детекторе, а лёгкий кварк проявляется как так называемая «струя», узенький пучок частиц, летящих в определённом направлении, это тоже регистрируется соответствующим детектором. Благодаря соответствующим энергетическим измерениям получена масса Т-кварка. На сегодняшний день масса Т-кварка известна с достаточно приличной точностью – 175 ± 5 ГэВ, этот объект хорошо установлен и обнаружен.
А.Г. Но он не стабилен?
Брачный сезон. Сирота
Любовные романы:
любовно-фантастические романы
рейтинг книги
Адвокат империи
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Измена. Верни мне мою жизнь
Любовные романы:
современные любовные романы
рейтинг книги
На границе империй. Том 5
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
Бастард Императора. Том 2
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На изломе чувств
Любовные романы:
современные любовные романы
рейтинг книги
Буревестник. Трилогия
Фантастика:
боевая фантастика
рейтинг книги
Убивать чтобы жить 6
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
рейтинг книги
Приватная жизнь профессора механики
Проза:
современная проза
рейтинг книги

Башня Ласточки
6. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Два мира. Том 1
Фантастика:
фэнтези
попаданцы
мистика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
