Диалоги (август 2003 г.)
Шрифт:
Итак, нужно воспользоваться новым математическим исчислением кортов, которое оперировало бы не с отдельными элементами, а с конечными множествами – кортами. Заметьте – в современной физике никто не рассматривает одновременно множество разных физических объектов. Современная наука занимается рассмотрением отдельных физических объектов и отдельных явлений.
При этом мне вспоминается моя последняя и единственная встреча с академиком Владимиром Александровичем Фоком, к которому я приехал в 1970 году в Ленинград, чтобы рассказать ему о своих работах по Теории физических структур и, в частности, о
Он встретил меня весьма доброжелательно, пригласил к себе домой и приготовился внимательно выслушать меня. Но когда я сказал:
– Рассмотрим два тела и две пружинки и измерим четыре ускорения …
Здесь он перебил меня:
– Простите, о чём идёт речь? о механике материальной точки? или о механике системы, состоящей из двух материальных точек?
Я ответил:
– Речь идёт о механике материальной точки, то есть о новой точке зрения на закон Ньютона.
– Но почему же вы рассматриваете два тела? Нет, я вас не понимаю! – и выключил свой слуховой аппарат, дав понять тем самым, что дальнейший разговор на эту тему лишён для него всякого смысла.
Действительно, очень трудно взглянуть на хорошо известную ещё с детства механику с существенно иной, непривычной точки зрения.
Чтобы объяснить, что такое корт, я начну, пожалуй, с наиболее наглядного примера.
Что такое физический закон? Не закон Ньютона и не закон Ома, а физический закон вообще? Чтобы ответить на этот вопрос, начнём с простейшего примера – с законов, лежащих в основании геометрии евклидовой прямой, геометрии евклидовой плоскости и геометрии трёхмерного евклидова пространства.
Возьмём две произвольные точки, лежащие на прямой, – двухточечный корт (корт – сокращённая форма слова кортеж. Кортеж – конечная последовательность элементов какого-либо множества), и измерим расстояние между ними. Это расстояние ничем не ограничено и может меняться от нуля до бесконечности. Никакого закона ещё нет.
Но если мы возьмём трёхточечный корт и измерим три расстояния между его тремя точками, то мы столкнёмся с качественно новой ситуацией. Три точки на прямой можно рассматривать как вершины «сплюснутого» треугольника, площадь которого равна нулю при любом расположении точек. Но с другой стороны, площадь треугольника зависит от длин трёх его сторон (формула Герона). Следовательно, между тремя расстояниями существует определённая связь, которая и есть простейший закон одномерной евклидовой геометрии.
Рассмотрим теперь трёхточечный корт на евклидовой плоскости и измерим три расстояния между его тремя точками. В этом случае площадь треугольника может меняться от нуля до бесконечности и, следовательно, между тремя расстояниями нет никакой связи.
Но если мы рассмотрим четырёхточечный корт и измерим шесть расстояний между его четырьмя точками, то мы столкнёмся с ситуацией, подобной той, которая наблюдалась на прямой. А именно, четыре точки на плоскости можно рассматривать как вершины «сплюснутого» тетраэдра, объём которого равен нулю при любом расположении точек. Но с другой стороны, объём тетраэдра зависит от длин его шести рёбер (формула Тартальи). Следовательно, между шестью расстояниями между четырьмя точками, произвольно расположенными на плоскости, имеет место вполне определённая связь,
Рассмотрим теперь четырёхточечный корт в трёхмерном евклидовом пространстве и измерим шесть расстояний между его четырьмя точками. В этом случае объём тетраэдра может меняться от нуля до бесконечности и, следовательно, между шестью расстояниями нет никакой связи.
Но если мы рассмотрим пятиточечный корт и измерим десять расстояний между его пятью точками, то мы обнаружим существование вполне определённой связи между десятью расстояниями пятиточечного корта. Эта связь и есть простейший закон трёхмерной евклидовой геометрии.
Аналогичным свойством возникновения закона при достижении векторного корта определённой длины обладает множество векторов в n-мерном линейном пространстве: если длина корта меньше или равна размерности линейного пространства, то векторы этого корта линейно независимы и между их скалярными произведениями нет никакой связи; если же длина векторного корта больше размерности линейного пространства, то векторы этого корта линейно зависимы и между их скалярными произведениями есть вполне определённая связь (обращение в ноль определителя Грама). А это и есть простейший закон, которому подчиняются векторы n-мерного линейного пространства.
Однако множества точек евклидовой прямой, евклидовой плоскости и трёхмерного евклидова пространства обладают ещё одним замечательным свойством.
Если в случае евклидовой прямой взять не один трёхточечный корт, как в предыдущем случае, а два произвольных трёхточечных корта и измерить девять расстояний между каждой точкой первого корта и каждой точкой второго корта, то все эти девять расстояний окажутся связанными между собой одним вполне определённым соотношением, которое является фундаментальным законом, лежащим в основании одномерной евклидовой геометрии.
Точно так же поступим в случае евклидовой плоскости. Рассмотрим два произвольных четырёхточечных корта и измерим шестнадцать расстояний между каждой точкой первого корта и каждой точкой второго корта. Можно показать, что все эти шестнадцать расстояний связаны между собой одним вполне определённым соотношением, которое является фундаментальным законом, лежащим в основании двумерной геометрии.
В случае трёхмерного евклидова пространства рассмотрим два произвольных пятиточечных корта и измерим двадцать пять соответствующих расстояний. Можно показать, что все эти расстояния связаны между собой одним соотношением, представляющим собой фундаментальный закон, лежащий в основании трёхмерной евклидовой геометрии.
Итак, мы можем сказать, что фундаментальный закон, лежащий в основании n-мерной евклидовой геометрии, представляет собой определённый вид отношений между двумя (n+2)-точечными кортами.
В случае векторной алгебры мы можем сказать почти то же самое: фундаментальный закон, лежащий в основании n-мерного векторного пространства, представляет собой определённый вид отношений между двумя (n+1)-векторными кортами.
Если мы перейдём от евклидовой геометрии и векторной алгебры к рассмотрению фундаментальных физических законов, лежащих в основании самых различных разделов физики, то мы всюду обнаружим одно и то же:
Невеста драконьего принца
Любовные романы:
любовно-фантастические романы
рейтинг книги
Мастер Разума III
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
рейтинг книги
Недотрога для темного дракона
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
рейтинг книги
Идеальный мир для Лекаря 26
26. Лекарь
Фантастика:
аниме
фэнтези
рейтинг книги
Измена. Мой заклятый дракон
Любовные романы:
любовно-фантастические романы
рейтинг книги
Случайная свадьба (+ Бонус)
Любовные романы:
современные любовные романы
рейтинг книги
Попаданка для Дракона, или Жена любой ценой
Любовные романы:
любовно-фантастические романы
рейтинг книги
1941: Время кровавых псов
1. Всеволод Залесский
Приключения:
исторические приключения
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
