Для юных математиков. Веселые задачи
Шрифт:
Решение задачи № 42
Эта задача решается весьма сходно с предыдущей. Начнем опять с 12 часов, когда обе стрелки совпадают. Нужно вычислить, сколько времени потребуется для того, чтобы минутная стрелка обогнала часовую ровно на полкруга, – тогда обе стрелки и будут направлены как раз в противоположные стороны. Мы уже знаем (см. предыдущую задачу), что в течение целого часа минутная стрелка обгоняет часовую на 11/12 полного круга; чтобы обогнать ее всего на 1/2 круга, понадобится меньше времени, чем целый час, – меньше во столько раз, во сколько 1/2 меньше 11/12, т. е. потребуется всего 6/11 часа. Значит, после 12 часов стрелки в первый раз располагаются одна против другой спустя 6/11 часа, или 32 8/11 минуты. Взгляните на часы в 32 8/11 минуты первого, и вы убедитесь, что стрелки направлены в противоположные стороны.
Единственный ли это момент, когда стрелки так расположены? Конечно, нет. Такое положение стрелки занимают спустя 32 8/11 минуты после каждой встречи. А мы уже знаем, что встреч бывает 11 в течение двенадцати часов; значит, и располагаются стрелки врозь тоже 11 раз в течение 12 часов. Найти эти моменты нетрудно:
12 ч. + 32 8/11 мин. = 12 ч. 32 8/11 мин.
1 ч. 5 5/11 мин. + 32 8/11 мин. = 1 ч. 38 2/11 мин.
2 ч. 10 10/11 мин. + 32 8/11 мин. = 2 час. 43 7/11 мин.
3 ч. 16 1/11 мин. + 32 8/11
Вычислить остальные моменты предоставляю вам самим.
Решение задачи № 43Если начать следить за стрелками ровно в 12 часов, то в течение первого часа мы искомого расположения не заметим. Почему? Потому что часовая стречка проходит 1/12 того, что проходит минутная, и, следовательно, отстает от нее гораздо больше, чем требуется для искомого расположения. На какой бы угол ни отошла от XII минутная стрелка, часовая повернется на 1/12 этого угла, а не на 1/2, как нам требуется. Но вот прошел час; теперь минутная стрелка стоит у XII, часовая – у 1, на 1/12 полного оборота впереди минутной. Посмотрим, не может ли такое расположение стрелок наступить в течение второго часа. Допустим, что момент этот наступил тогда, когда часовая стрелка отошла от цифры XII на долю оборота, которую мы обозначаем через х. Минутная стрелка успела за то же время пройти в 12 раз больше, т. е. 12·x. Если вычесть отсюда один полный оборот, то остаток 12·x-1 должен быть вдвое больше, чем х, т. е. равняться 2·x. Мы видим, следовательно, что 12·x-1 = 2·x откуда следует, что 1 целый оборот равен 10·x (действительно: 12·x-10·x = 2·x). Но если 10·x = целому обороту, то одно X = 1/10части оборота. Вот и решение задачи: часовая стрелка отошла от цифры XII на 12/10 полного оборота, на что требуется 12/10 часов, или 1 час 12 мин. Минутная стрелка при этом будет вдвое дальше от XII, т. е. на расстоянии 1/5 оборота; это отвечает 60/5 = 12 минутам, – как и должно быть.
Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.
Для этого дождемся двух часов; минутная стрелка стоит у XII, а часовая – у II. Рассуждая по предыдущему, получаем равенство
12·x-2 = 2·x
откуда 2 целых оборота равны 10·x и, значит, x = 1/5 целого оборота. Это соответствует моменту 12/5 = 2 ч. 24 м.
Дальнейшие моменты вы легко вычислите сами. Тогда вы найдете, что стрелки располагаются согласно требованию задачи в следующие 10 моментов:
в 1 час 12 мин.
в 2 » 24 »
в 3 » 36 »
в 4 » 48 »
в 6 часов
в 7 » 12 »
в 8 » 24 »
в 9 » 36 »
в 10 » 48 »
в 12 часов.Ответы: «в 6 часов» и «в 12 часов» могут показаться неверными, – но только с первого взгляда. Действительно: в 6 часов часовая стрелка стоит у VI, минутная же – у XII, т. е. ровно вдвое дальше. В 12 же часов часовая стрелка удалена от XII на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль – то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи. Решение задачи № 44
После предыдущих разъяснений решить эту задачу уже не трудно. Легко сообразить, рассуждая, как прежде, что в первый раз требуемое расположение стрелок будет в тот момент, который определяется равенством:
12·x – 1 = x/2,
откуда 1 = 11 1/2·x, или x = 2/23 целого оборота, т. е. через 1 1/23 часа после XII. Значит, в 1 час. 2 14/23 минуты стрелки будут расположены требуемым образом. Действительно, минутная стрелка должна стоять посредине между XII и 1 1/23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка пройдет 2/23 целого оборота).
Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства:
12·x – 2 = x/2,
откуда 2 = 11 1/2·x и х = 4/23; искомый момент – 2 часа 5 5/23 мин.
Третий искомый момент – 3 час. 7 19/23 мин. и т. д.
Решение задачи № 45Задача эта решается так же, как и предыдущая. Вообразим, что обе стрелки стояли у XII, и затем часовая отошла от XII на некоторую часть полного оборота, которую мы обозначим буквою х. Минутная стрелка за то же время успела повернуться на 12·?. Если времени прошло не больше одного часа, то для удовлетворения требованию нашей задачи необходимо, чтобы минутная стрелка отстояла от конца целого круга на столько же, на сколько часовая стрелка успела отойти от начала; другими словами:
1-12·x = x.
Отсюда 1 = 13·x (потому что 13·x-12·x = x). Следовательно, x = 1/13 доле целого оборота. Такую долю оборота часовая стрелка проходит в 12/13 часа, т. е. показывает 55 5/13 мин. первого. Минутная стрелка в то же время прошла в 12 раз больше, т. е. 12/13 полного оборота; обе стрелки, как видите, отстоят от XII одинаково, а следовательно, одинаково отодвинуты и от VI по разные стороны.
Мы нашли одно положение стрелок – именно то, которое наступает в течение первого часа. В течение второго часа подобное положение наступит еще раз; мы найдем его, рассуждая по предыдущему, из равенства
1-(12·x-1) = x или 2-12·x = x,
откуда 2 = 13·x (потому что 13·x-12·x = x), и, следовательно, x = 2/13 полного оборота. В таком положении стрелки будут в 1 11/13часа, т. е. в 50 10/13 минуты второго.
В третий раз стрелки займут требуемое положение, когда часовая стрелка отойдет от XII на 3/13 полного круга, т. е. в 2 10/13 часа, и т. д. Всех положений 11, причем после VI часов стрелки меняются местами: часовая стрелка занимает те места, в которых была раньше минутная, а минутная становится на места часовой.
Решение задачи № 46Обычно отвечают – «7 секунд». Но такой ответ, как сейчас увидим, неверен.
Когда часы бьют три, мы наблюдаем два промежутка:
1) между первым и вторым ударом;
2) между вторым и третьим ударом.
Оба промежутка длятся 3 секунды; значит, каждый продолжается вдвое меньше – именно 1 1/2 секунды.
Когда же часы бьют семь, то таких же промежутков бывает 6. Шесть раз по полторы секунды составляют 9 секунд. Следовательно, часы «бьют семь» (т. е. делают 7 ударов)в 9 секунд.
Решение задачи № 47Солнце при своем кажущемся суточном движении описывает полный круг в 24 часа, – т. е. во столько же времени, как и часовая стрелка упомянутых заграничных часов. Поэтому, если в полдень, т. е. в 12 часов дня, расположить циферблат карманных часов так, чтобы часовая стрелка была направлена на солнце, то стрелка эта, двигаясь вместе с солнцем, будет все время указывать на дневное светило.
Отсюда вытекает простой способ отыскивать помощью часов (конечно, только днем, в безоблачную погоду) то место, где солнце бывает в полдень, т. е. находить направление на юг. Для этого нужно только расположить циферблат так, чтобы часовая стрелка указывала
Часовая стрелка обыкновенных часов описывает полный круг не в 24 часа, а в 12 часов, т. е. движется вдвое медленнее, чем солнце по небу. Отсюда легко сообразить (см. предыдущую задачу), как найти направление на юг с помощью обыкновенных карманных часов.
Нужно расположить их так, чтобы часовая стрелка была направлена на солнце, и разделить пополам (на глаз) угол между часовой стрелкой и направлением на цифру XII. Линия, делящая этот угол пополам, покажет, где солнце было в полдень, т. е. покажет точку юга.
Решение задачи № 49
Большинство людей в ответ на вопрос нашей задачи рисуют:
6 или 9, или: VI или IΛ.
Это показывает, что можно видеть вещь сто тысяч раз и все-таки не знать ее. Дело в том, что обычно на циферблате (мужских часов) цифры шесть вовсе нет, потому что на ее месте помещается секундник.
Решение задачи № 50
Загадочные перерывы в тиканьи часов происходят просто от утомления слуха. Наш слух, утомляясь, притупляется на несколько секунд – и в эти промежутки мы не слышим тиканья. Спустя короткое время утомление проходит, и прежняя чуткость восстанавливается, – тогда мы снова слышим ход часов. Затем наступает опять утомление, и т. д.
Глава VI Неожиданные подсчеты
ЗАДАЧА № 51
Стакан гороху
Вы много раз держали в руках горошину и не менее часто имели дело со стаканом. Размеры того и другого вам должны быть поэтому хорошо знакомы. Представьте же себе теперь стакан, доверху наполненный горохом, и вообразите, что все эти горошины выставлены в один ряд, вплотную одна к другой.
Как вы думаете – был бы этот ряд длиннее обеденного стола или короче?
ЗАДАЧА № 52
Листья дерева
Если бы сорвать с какого-нибудь старого дерева – например с липы – все листья и положить их рядом, без промежутков, то какой приблизительно длины был бы этот ряд? Можно ли было бы, например, окружить им большой дом?
ЗАДАЧА № 53
Миллион шагов
Вы, конечно, очень хорошо знаете, что такое миллион, и столь же хорошо представляете себе длину своего шага. А раз вы знаете то и другое, то вам нетрудно будет ответить на вопрос: как далеко отошли бы вы, сделав миллион шагов? Больше, чем на 10 километров, или меньше?
ЗАДАЧА № 54
Квадратный метр
Я знал школьника, который, услышав впервые, что в квадратном метре миллион квадратных миллиметров, не хотел этому верить. Никакие разъяснения не были для него убедительны. «Откуда их берется так много? – недоумевал он. – Вот у меня лист миллиметровой бумаги, длиною и шириною ровно в метр. Неужели же в этом квадрате целый миллион миллиметровых клеточек? Ни за что не поверю».
– А ты пересчитай, – посоветовали ему.
– И пересчитаю! В воскресенье будет у меня свободное время, я и займусь этим делом.
В воскресенье он встал рано утром и сразу же принялся за счет, аккуратно отмечая точками сосчитанные квадратики. Каждую секунду появлялась новая точка под острием его карандаша; работал он усердно, и дело шло быстро.
Но убедился ли он в этот день, что квадратный метр заключает действительно миллион миллиметровых клеточек?
ЗАДАЧА № 55
Кубический метр
В одной школе учитель задал вопрос: какой высоты получился бы столб, если бы поставить один на другой все миллиметровые кубики, заключающиеся в кубическом метре?
– Это было бы выше Эйфелевой башни (300 метров)! – воскликнул один школьник.
– Даже выше Монблана (5 км), – ответил другой.
Кто из них ошибался больше?
ЗАДАЧА № 56
Кубический километр
Вообразите кубический ящик высотой в целый километр (немного менее версты). Как вы думаете, сколько таких ящиков понадобилось бы, чтобы вместить тела всех людей, живущих на свете? Примите во внимание, что население земного шара равно 1800 миллионам человек и что в одном кубическом метре можно уместить, средним счетом, 5 человеческих тел.
ЗАДАЧА № 57
Волос
Человеческий волос очень тонок: толщина его – около 20-й доли миллиметра. Но если бы волос был в миллион раз толще, какой примерно ширины был бы он? Один из моих знакомых, которому я задал этот вопрос, ответил, что волос был бы тогда толще круглой комнатной печи; другой утверждал, что волос был бы шириной во всю комнату. Оба, конечно, ошибались, – но кто ошибся больше?
ЗАДАЧА № 58
Сколько портретов?
Нарисуйте портрет на папке и разрежьте его на полосы, как показано на нашем рисунке, – положим, на 9 полос. Если вы умеете хоть немного рисовать, вам нетрудно будет изготовить еще такие же полосы с изображением различных частей лица, – однако так, чтобы каждые две соседние полосы, даже принадлежащие к разным портретам, можно было прикладывать одну к другой без нарушения непрерывности линий. Если вы для каждой части лица приготовите, например, 4 полосы [13] , у вас будет 28 полос, из которых, складывая по 9, вы сможете составлять разнообразные портреты.
Рис. 42. Составные портреты.
В магазинах, где одно время продавали готовые наборы таких полос (или брусков) для составления портретов, продавцы уверяли покупателей, что из 36 полос можно получить т ы с я ч у различных физиономий.
Верно ли это?
ЗАДАЧА № 59 Французский замокХотя французский замок известен всем, но устройство его знают лишь немногие. Поэтому часто приходится слышать сомнения в том, чтобы могло существовать большое число различных французских замков и ключей к ним. Достаточно, однако, познакомиться с остроумным механизмом этих замков, чтобы убедиться в возможности разнообразить их в достаточной степени.
Рис. 43-й изображает французский замок, как мы его видим с лица (кстати, – название «французский» совершенно неправильно, так как родина этих замков Америка, а изобретатель их американец Иэль, – почему на всех таких замках и ключах имеется надпись «Yale»). Вы видите вокруг замочной скважины небольшой кружок: это основание валика, проходящего через весь замок. Задача открывания замка заключается в том, чтобы повернуть этот валик, – но в этом-то и вся трудность. Дело в том, что валик удерживается в определенном положении пятью короткими стальными стерженьками (черт. 44). Каждый стерженек в каком-нибудь месте распилен надвое, и только если разместить стерженьки так, чтобы все разрезы приходились на уровне валика, можно будет его повернуть.