Чтение онлайн

на главную - закладки

Жанры

ДНК. История генетической революции
Шрифт:

От ДНК до белка: в ядре ДНК транскрибируется в матричную РНК, которая затем выводится в цитоплазму для трансляции в белок. Трансляция происходит в рибосомах: транспортные РНК, комплементарные каждому триплету-кодону пар оснований в матричной РНК, доставляют аминокислоты, которые связываются друг с другом, образуя белковую цепочку

Алкаптонурию, которую изучал Арчибальд Гаррод, также исследовали в эру молекулярной биологии. В 1995 году испанские ученые, работавшие с грибком, обнаружили мутантный ген, приводящий к накоплению того же темного вещества, которое Гаррод обнаружил в моче пациентов с алкаптонурией. Оказалось, что этот ген по умолчанию кодирует один из базовых ферментов, присутствующих у многих живых организмов, и в том числе у человека. При сравнении последовательности нуклеотидов в гене

грибка с последовательностями человеческих нуклеотидов удалось найти у человека ген, кодирующий фермент фенилаланинового пути – гомогентизат-1,2-диоксигеназу, вследствие чего не подвергается дальнейшему расщеплению один из промежуточных продуктов катаболизма – гомогентизат, который накапливается в жидкостях тела и выводится из организма с мочой. Далее требовалось сравнить этот ген у здоровых людей и у страдающих алкаптонурией. Что бы вы думали – оказалось, что при алкаптонурии этот ген не работает, причем всему виной мутация в единственной паре оснований. Обнаруженная Гарродом врожденная ошибка метаболизма оказалась обусловлена единственным изъяном в последовательности ДНК.

В 1966 году в Колд-Спринг-Харборе состоялся симпозиум, посвященный генетическому коду. Возникло ощущение, что мы практически у цели: код взломан, мы в общих чертах понимаем, как ДНК управляет биологическими процессами через кодируемые ею белки. Некоторые представители старой гвардии думали, что пора уже не ограничиваться изучением гена как такового. Френсис Крик решил перейти к работе в сфере нейробиологии; он никогда не пасовал перед масштабными проблемами и очень хотел выяснить, как именно работает человеческий мозг. Сидней Бреннер заинтересовался биологией развития и сконцентрировался на изучении примитивного червя-нематоды, считая, что именно столь простой организм лучше всего подходит для опытов, которые позволят ученым прояснить взаимосвязи между генами и механизмами развития. Сегодня «червь» – именно под таким названием он известен в профессиональной среде – действительно помог понять многие вещи, связанные со «сборкой» организмов. Вклад «червя» в науку был оценен Нобелевским комитетом в 2002 году, когда Сидней Бреннер и двое давнишних исследователей «червя» – Джон Салстон из Кембриджа и Боб Хорвиц из Массачусетского технологического института – были удостоены Нобелевской премии по физиологии и медицине.

Однако большинство ученых, стоявших в свое время у истоков исследований ДНК, по-прежнему пытались выявить базовые механизмы работы генов. Почему количество одних белков во много раз больше, чем других? Многие гены включаются лишь в конкретных клетках или в определенный период жизни клетки; как обеспечивается такое срабатывание? Например, мышечная клетка кардинально отличается от печеночной как функционально, так и внешне (под микроскопом). Такое клеточное многообразие и дифференцировка связаны с изменениями в экспрессии генов; в сущности, в мышечных и печеночных клетках синтезируются разные наборы белков. Простейший способ синтезировать разные белки – регулировать, какие именно белки будут транскрибироваться в каждой клетке. Следовательно, некоторые белки, именуемые «белками общеклеточных функций» (они необходимы для работы клетки как таковой – например, обеспечивают репликацию ДНК), продуцируются во всех клетках. Кроме того, некоторые гены включаются в конкретные моменты в строго определенных клетках, продуцируя при этом нужные белки. Здесь можно поговорить о развитии – процессе, при котором из единственной оплодотворенной яйцеклетки вырастает сложно устроенный взрослый человек. Все это результат переключения генов. При формировании тканей в процессе развития гены должны включаться и выключаться целыми пачками.

Франсуа Жакоб, Жак Моно и Андре Львофф

Первые важные результаты на пути к пониманию процесса включения и выключения генов были получены в 1960-е годы в процессе экспериментов, выполненных Франсуа Жакобом и Жаком Моно в Институте Пастера в Париже. Научная карьера Моно начиналась медленно, поскольку он был настолько разносторонне одарен, что не мог сосредоточиться на чем-то конкретном. В 1930-е годы он работал на биологическом факультете Калифорнийского технологического института под руководством Моргана, родоначальника генетики дрозофил, но даже круглосуточное пребывание в кругу уже не столь юных учеников Моргана не превратило Моно в адепта науки о плодовых мушках. Он предпочитал дирижировать в университете концертами Баха (ему даже предложили подработку – преподавать студентам музыкальную грамоту) либо пропадал в роскошных домах местных миллионеров. К 1940 году он так и не закончил работу над диссертацией в Сорбонне, поскольку принимал активное участие в деятельности французского Сопротивления. Жак Моно – редчайший человек, сумевший совместить шпионаж с биологией. Он ухитрялся прятать важнейшие секретные документы в полых костях скелета жирафа, выставленного у всех на виду у него в лаборатории. Война разгоралась, поэтому ценность деятельности Моно для Сопротивления все более возрастала (как и риск попасть к нацистам). К моменту высадки союзников в Нормандии Моно уже играл в Сопротивлении ключевую

роль, содействуя наступлению союзных частей, которые теснили немцев.

Франсуа Жакоб также успел повоевать, поскольку перебрался в Великобританию и вступил в Свободную армию генерала де Голля. Он служил в Северной Африке и участвовал в высадке союзников в Нормандии. Вскоре после этого он едва не погиб при бомбежке – из него вытащили двадцать осколков шрапнели, а еще восемьдесят он так и носил в себе до самой смерти в 2013 году. Из-за ранения в руку Жакобу пришлось расстаться с планами на карьеру хирурга, и он, подобно многим представителям нашего поколения, вдохновился книгой Шрёдингера «Что такое жизнь?» и занялся биологией. Он неоднократно пытался присоединиться к исследовательской группе Моно, но получал отказ. Однако на шестой или седьмой раз (по подсчетам самого Жакоба) руководитель Моно микробиолог Андре Львофф наконец уступил – это произошло в июне 1950 года.

Даже не предоставив мне возможности заново объяснить, чего я хочу, насколько я невежественен и как хочу работать, [Львофф] объявил: «Знаете, мы открыли индукцию профага!» [то есть узнали, как активировать ДНК бактериофага, внедренную в ДНК бактерии-хозяина].

«О!» – сказал я, вложив в этот возглас такую дозу восхищения, какую только мог, а про себя подумал: «И что за зверь этот профаг?»

Затем он спросил: «Вас интересует работа с фагами?» Я выдавил, что именно на нее я и рассчитывал. Он ответил: «Вот и хорошо, приходите первого сентября».

Очевидно, Жакоб отправился с собеседования прямиком в книжный магазин – покупать словарь, чтобы выяснять, чем же это он только что согласился заниматься.

Несмотря на столь бесславный старт, альянс Жакоба и Моно породил первоклассные научные достижения. Коллеги подступились к проблеме переключения генов у бактерии Escherichia coli – всем известной кишечной палочки. Они стали изучать, как эта бактерия синтезирует лактозу, молочный сахар. Для расщепления лактозы эта бактерия синтезирует фермент под названием -галактозидаза, разделяющий лактозу на два более простых сахара: галактозу и глюкозу. Когда лактоза отсутствует в питательной среде, бактериальная клетка не синтезирует -галактозидазу; но, когда лактоза появляется в растворе, клетка начинает продуцировать этот фермент. Жакоб и Моно рассудили, что именно наличие лактозы запускает синтез -галактосидазы, и решили выяснить, как именно срабатывает механизм, который получил название механизма индукции-репрессии.

Поставив ряд красивых экспериментов, Жакоб и Моно установили, что синтез соответствующих белков – ферментов – индуцируется веществом, служащим субстратом и необходимым для нормальной жизнедеятельности клетки. Так, например, для нормальной жизнедеятельности E. coli необходим молочный сахар (лактоза), и в ее геноме содержатся гены, контролирующие синтез ферментов, гидролизующих лактозу до простых соединений. Если среда, в которой находятся бактерии, лактозы не содержит, эти гены пребывают в репрессированном состоянии и не функционируют. Внесенная в среду лактоза будет тем индуктором, который включает в работу длинные гены, и в клетке начинается синтез ферментов, гидролизующих лактозу до более простых соединений. После удаления лактозы из среды синтез этих ферментов прекращается. Механизм индукции-репрессии обеспечивает включение в работу тех генов, которые синтезируют необходимые на данном этапе жизнедеятельности клетки ферменты. Работа генов прекращается, когда деградируемый данными ферментами субстрат израсходован или когда синтезируемое данными ферментами вещество находится в избытке.

Оказалось, что в любых организмах действуют одни и те же принципы.

У высших организмов процесс регуляции работы генов осуществляется более сложно: у животных важную роль в этом процессе играют гормоны, клеточные мембраны; у растений – условия внешней среды, в том числе и окружающие клетки.

Жаков и Моно получили такие результаты, изучая мутантные штаммы Escherichia coli. Они не обнаружили прямых доказательств существования молекулы-репрессора, а просто логически предположили, что она существует, поскольку именно такое заключение позволяло разгадать эту генетическую загадку. Их идеи были подтверждены на молекулярном уровне лишь в конце 60-х годов, когда Уолтер (Уолли) Гилберт и Бенно Мюллер-Хилл из Гарварда решились выделить и проанализировать молекулу-репрессор как таковую. Жакоб и Моно лишь предсказали ее существование, а Гилберт и Мюллер-Хилл ее нашли. Поскольку обычно репрессор существует лишь в минимальных количествах – всего по несколько молекул на клетку, технически оказалось невероятно сложно собрать значимый образец, который удалось бы исследовать. Но в итоге у них все получилось.

В то же самое время на том же этаже, но в другой лаборатории трудился Марк Ташне, которому удалось выделить и описать другую молекулу-репрессор – на этот раз в системе переключения генов бактериофага. Оказалось, что молекулы-репрессоры – это белки, способные связываться с ДНК. Именно это и происходит с репрессором -галактозидазы при отсутствии лактозы: он связывается с ДНК Escherichia coli на участке, расположенном поблизости от той точки, с которой начинается транскрипция гена -галактосидазы. Таким образом, репрессор блокирует фермент, контролирующий синтез матричной РНК из гена.

Поделиться:
Популярные книги

Товарищ "Чума" 3

lanpirot
3. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 3

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Последняя из забытого рода

Властная Ирина
1. Последняя из забытого рода
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя из забытого рода

Курсант. На Берлин

Барчук Павел
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант. На Берлин

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Недотрога для темного дракона

Панфилова Алина
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Недотрога для темного дракона

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25