Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
Кроме того, теория струн вводит новые элементы, а именно браны; их назначение — обеспечить геометрии Вселенной дополнительные возможности в том случае, если она действительно содержит дополнительные измерения. В 1990–е гг. физик–теоретик, специалист по теории струн Джо Полчински установил, что теория струн — это не просто теория одномерных объектов. Вместе с коллегами он продемонстрировал, что для этой теории также принципиально важны многомерные объекты, известные как браны.
«Брана» происходит от слова «мембрана». Подобно мембранам, которые представляют собой двумерные поверхности в трехмерном пространстве, браны в многомерном пространстве — это поверхности с меньшим числом
Можно сказать, что существует два типа струн: открытые струны, у которых есть концы, и замкнутые струны, образующие кольца вроде аптечных резинок (рис. 63). В 1990–е гг. струнники–теоретики поняли, что концы открытых струн не могут находиться где попало — струны должны начинаться и заканчиваться на бранах. Частицы, возникающие из колебаний открытой струны, прикрепленной к бране, тоже оказываются запертыми на ней. Частицы, представляющие собой колебания этих струн, не могут никуда уйти с браны. Как капли на окне, они могут передвигаться в пределах измерений браны, но не могут ее покинуть.
Теория струн предполагает, что существует множество типов бран, но для моделей, пытающихся разрешить проблему иерархии, больше всего интересны те, что распространяются на три измерения — те самые три физических измерения пространства, которые нам известны. Частицы и силы могут быть заперты на такой бране, при том что пространство и тяготение охватывают больше измерений (на рис. 64 схематично представлен мир браны, где человек и магнит ограничены измерениями браны, а гравитация действует как на ней, так и за ее пределами).
Дополнительные измерения теории струн в принципе могли бы оказывать физическое влияние на наблюдаемый мир, как и трехмерные браны. Возможно, важнейшая причина рассматривать дополнительные измерения заключается в том, что они могут влиять на видимые явления и, в частности, объяснять серьезнейшие загадки, такие как проблема иерархии в физике элементарных частиц. Дополнительные измерения и браны могут оказаться ключом к решению этой проблемы; возможно, они помогут понять, почему гравитация так слаба.
Это возвращает нас к главной причине обращения к многомерным моделям и дополнительным пространственным измерениям. Они могут оказывать влияние на явления, в которых мы сейчас пытаемся разобраться, и если это так, то не исключено, что доказательства их существования появятся в самом ближайшем будущем.
Напомню, что проблему иерархии можно сформулировать двумя разными способами. Можно описать суть вопроса тем, что масса хиггсовой частицы — и, соответственно, масштаб слабого взаимодействия — на много порядков меньше массы Планка. Именно этот вопрос мы рассматривали,
Загадка, связанная со слабостью гравитационных сил, по существу эквивалентна проблеме иерархии — решение одной решает и другую. Но формулировка проблемы иерархии в терминах гравитации помогает думать о решениях, связанных с дополнительными измерениями. А нам пора познакомиться с парой наводящих вопросов.
ИЕРАРХИЯ И БОЛЬШИЕ ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ
С того самого момента, когда человек впервые задумался над проблемой иерархии, физики были уверены, что решение этой проблемы должно быть связано с модифицированными взаимодействиями частиц на масштабе слабого взаимодействия, то есть на энергиях порядка 1 ТэВ. С учетом только частиц Стандартной модели квантовый вклад в массу частицы Хиггса попросту слишком велик. Должен найтись фактор, который вмешается и «укротит» большие квантово–механические поправки к массе хиггса.
Суперсимметрия и техницвет — два примера моделей, где в высокоэнергетических взаимодействиях могут участвовать новые тяжелые частицы, которые компенсируют ненужные добавки или вообще не дадут им возникнуть. До 1990–х гг. все предлагавшиеся решения проблемы иерархии попадали в одну и ту же категорию — моделей с новыми частицами и взаимодействиями и даже новыми симметриями, проявляющимися на масштабе энергий слабого взаимодействия.
В 1998 г. Нима Аркани–Хамед, Савас Димопулос и Гия Двали предложили альтернативный подход к проблеме. Они указали на то, что поскольку проблема касается не только масштаба слабого взаимодействия, но и его соотношения с масштабом Планка, связанным с гравитацией, то, может быть, все дело в некорректном понимании фундаментальной природы гравитации.
Они предположили, что на самом деле среди масс не существует никакой иерархии — по крайней мере по отношению к фундаментальному масштабу гравитации в сравнении со слабым масштабом. Может быть, в многомерной Вселенной сила тяготения сильна, а в нашем мире с количеством измерений «три–плюс- один» ее измерение дает такой слабый результат только потому, что она как бы «размазана» по всем измерениям. Их гипотеза состояла в том, что на самом деле в многомерной Вселенной гравитация становится сильной на масштабе масс слабого взаимодействия, а при измерениях мы получаем такие скромные результаты не потому, что гравитация фундаментально слаба, а потому лишь, что она, помимо трех привычных измерений, распространяется на большие невидимые измерения.