Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
Мы сосредоточили внимание на одном новом измерении, но их может быть и больше — вот только в нашем сценарии они не будут играть существенной или хотя бы различимой роли в объяснении свойств частиц. Поэтому мы можем вполне оправданно игнорировать их при исследовании проблемы иерархии — в полном соответствии с концепцией эффективной теории — и сосредоточиться на выводах, которые можно сделать исходя из существования одного дополнительного измерения.
Если наша с Раманом идея верна, то БАК вскоре расскажет нам о природе пространства много интересного. Оказывается, предложенная нами Вселенная сильно искривлена в соответствии с учением Эйнштейна о том, как ведет себя пространство–время в присутствии вещества и энергии. Говоря технически, геометрия, выведенная нами из уравнений Эйнштейна, свернута (этот термин
Одно из важных следствий такой геометрии свернутого пространства заключается в том, что частица Хиггса, будучи тяжелой в какой-то другой точке многомерного пространства, имеет в том месте, где мы живем, массу, соответствующую слабому взаимодействию, как, собственно, и должно быть. Такое заявление кажется несколько произвольным, но на самом деле никакого произвола нет. Согласно нашему сценарию существует брана, на которой мы живем — брана слабого взаимодействия, — и вторая брана, где сосредоточена гравитация, — брана гравитации, или брана Планка, как между собой называют ее физики. На этой бране должна располагаться другая вселенная, отделенная от нашей дополнительным измерением (рис. 67). При этом вторая брана должна располагаться где-то совсем рядом — на бесконечно малом расстоянии, в 1030 раз меньше сантиметра.
При переходе от одной браны к другой пространство, время, энергия и масса экспоненциально меняются. В этом сценарии было бы очень логично обнаружить, что масса Хиггса экспоненциально меньше массы Планка.
Свернутая геометрия имеет одно замечательное свойство (проиллюстрированное на рис. 67); заключается оно в том, что гравитон — частица, переносящая гравитационное взаимодействие, — намного тяжелее на второй бране, чем на нашей. Это делает гравитационное взаимодействие сильным в другом измерении, но очень слабым в том мире, где мы живем. Более того, Раман и я обнаружили, что гравитация в нашем мире должна быть экспоненциально слабее, чем на другой бране; таким образом, мы получаем естественное объяснение слабости гравитации в нашем мире.
Иначе следствия такой организации Вселенной можно интерпретировать через геометрию пространства–времени, схематически изображенную на рис. 68. Масштаб пространства–времени зависит от расположения браны на четвертой пространственной оси. Массы также претерпевают экспоненциальное масштабирование, причем таким образом, чтобы бозон Хиггса получился таким, как нужно. Можно, конечно, спорить о допущениях, на которых основана наша модель, но сама геометрия непосредственно следует из теории гравитации Эйнштейна, если постулировать, какую энергию имеют браны и какую — само многомерное пространство. Мы с Раманом нашли решение соответствующих уравнений общей теории относительности и, сделав это, получили уже описанную мной геометрию: а именно искривленное свернутое пространство, в котором массы масштабируются таким образом, что проблема иерархии решается автоматически.
В отличие от моделей с большими дополнительными измерениями, модели, основанные на геометрии свернутого пространства, не заменяют прежнюю загадку (проблему иерархии) новой (почему дополнительные измерения настолько велики?). В свернутой геометрии дополнительные измерения вовсе не велики, а большие числа возникают в результате экспоненциального масштабирования пространства и времени. Экспоненциальное масштабирование делает отношение размеров — и масс — объектов громадным даже в тех случаях, когда эти объекты очень близки друг к другу в многомерном пространстве.
Экспоненциальная функция не придумана нами. Она возникает из уникального решения уравнений Эйнштейна в предложенном нами сценарии. Мы с Раманом вычислили, что в свернутой
В свернутой геометрии гравитация в нашем мире слаба не потому, что «растекается» по большим дополнительным измерениям, а потому, что сконцентрирована в другом месте: на другой бране. Наша гравитация — всего лишь «хвост» того, что в других регионах многомерного мира проявляется как очень интенсивное взаимодействие.
Мы не видим другой вселенной, потому что наши браны объединяет лишь сила гравитационного взаимодействия, а гравитация здесь слишком слаба, чтобы передавать легко наблюдаемые сигналы. Вообще говоря, этот сценарий можно рассматривать как единственный пример мультивселенной, в которой содержимое и элементы нашего мира взаимодействуют очень слабо — а иногда и совсем не взаимодействуют — с содержимым другого мира. Большинство подобных построений проверить невозможно. В конце концов, если какое-то вещество находится так далеко, что его свет не достигнет нас даже за все время жизни Вселенной, мы никак не сможем убедиться в его существовании. Предложенный нами сценарий мультивселенной необычен тем, что общее для двух миров гравитационное взаимодействие имеет экспериментально проверяемые следствия. Мы не рассчитываем непосредственно добраться до второй вселенной, но частицы, путешествующие в многомерном пространстве, могут попасть и в наш мир.
Самым очевидным следствием многомерности мира при отсутствии детальных исследований — таких, какие будут проводиться на БАКе, —является объяснение иерархии масштабов масс, в котором нуждается любая теория физики элементарных частиц, чтобы успешно описывать наблюдаемые явления.
Мы надеемся, что высокие энергии, которые планируется получить на БАКе, помогут нам понять, что представляет собой дополнительное пространственное измерение — всего лишь причудливую идею или реальный факт бытия Вселенной. Если наша теория верна, то следует ожидать, что на БАКе будут получены моды Калуцы — Клейна. Из-за связи с проблемой иерархии масштаб энергий, на котором при таком сценарии следует искать КК–моды, примерно соответствует тому масштабу, который будет исследоваться на БАКе в рабочем режиме. Считается, что КК–моды в этом случае должны обладать массой порядка 1 ТэВ, то есть масштаба слабого взаимодействия. Эти тяжелые частицы, возможно, возникнут, как только на БАКе будут достигнуты достаточно высокие энергии. Обнаружение КК–частиц послужило бы ключевым доказательством нашей идеи и позволило бы заглянуть в огромный непознанный мир.
Заметим, что КК–моды свернутой геометрии обладают важной отличительной чертой. Если сам гравитон взаимодействует с окружающим необычайно слабо — в конце концов, он передает чрезвычайно слабое гравитационное взаимодействие, — то КК- моды гравитона взаимодействуют гораздо активнее и сильнее, почти на уровне так называемого слабого взаимодействия, которое в триллионы раз сильнее гравитации.
Причина того, что КК–гравитоны взаимодействуют с такой удивительной силой, заключается в особенностях свернутой геометрии, по которой они путешествуют. Из-за сильной искривленности пространства–времени взаимодействия КК–гравитонов намного сильнее, чем взаимодействия самого гравитона, переносящего то самое гравитационное взаимодействие, которое мы испытываем. В свернутой геометрии масштабируются не только массы, но и гравитационные взаимодействия. Расчеты показывают, что в свернутой геометрии взаимодействия КК–гравитонов сравнимы по силе с взаимодействием частиц масштаба слабого взаимодействия.
Это означает, что, в отличие от суперсимметричных моделей, а также маловероятных моделей с большими дополнительными измерениями, для экспериментального доказательства этого сценария не придется искать и измерять недостающую энергию на месте интересных частиц, сумевших ускользнуть незамеченными. Вместо этого у нас будут гораздо более четкие и простые для распознавания сигнатуры в виде частиц, которые внутри детектора будут распадаться на частицы Стандартной модели, оставляющие видимые следы (см. пример на рис. 69, где КК–частица рождается и распадается на электрон и позитрон).