Думай «почему?». Причина и следствие как ключ к мышлению
Шрифт:
В главе 2 читатели найдут странную историю о том, как научная дисциплина статистика развила в себе слепоту к причинности и как это привело к далеко идущим последствиям для всех наук, зависящих от данных. Кроме того, в ней излагается история одного из величайших героев этой книги, генетика Сьюалла Райта, который в 1920-е годы нарисовал первые диаграммы причинности и долгие годы оставался одним из немногих ученых, осмелившихся воспринимать ее серьезно.
В главе 3 рассказывается равно любопытная история о том, как я обратился к причинности, работая над искусственным интеллектом – особенно над байесовскими сетями. Это был первый инструмент, который позволил компьютерам понимать «оттенки серого», и какое-то время я полагал, что они содержат главный ключ к искусственному интеллекту. К концу 1980-х годов я пришел
Глава 4 рассказывает о главном вкладе статистики в причинный анализ – рандомизированном контролируемом исследовании (РКИ). С точки зрения причинности РКИ – это созданный человеком инструмент, позволяющий вскрыть запрос P (L | do (D)), возникший в природе. Главная его цель – отделить интересующие нас переменные (скажем, D и L) от других переменных (Z), которые в противном случае повлияли бы на обе предыдущие. Избавление от осложнений, вызванных такими неочевидными переменными, было проблемой в течение 100 лет. Эта глава показывает читателям удивительно простое ее решение, которое вы поймете за 10 минут, играючи проходя по путям в диаграмме.
Глава 5 повествует о поворотном моменте в истории причинности (и даже в истории всей науки), когда статистики столкнулись со сложностями, пытаясь выяснить, приводит ли курение к раку легких. Поскольку они не могли использовать свой любимый инструмент, РКИ, им было трудно прийти не только к единому выводу, но и к общему пониманию вопроса. Миллионы жизней оборвались или сократились из-за того, что ученым недоставало подходящего языка и методологии для ответов на вопросы о причинности.
Глава 6, надеюсь, даст читателям приятный повод отвлечься от серьезных вопросов из главы 5. Это глава о парадоксах – Монти Холла, Симпсона, Берксона и др. Классические парадоксы такого рода можно рассматривать как занимательные головоломки, однако у них есть и серьезная сторона, которая видна особенно хорошо, если взглянуть на них с точки зрения причинности. Более того, почти все они отражают столкновения с причинной интуицией и таким образом обнажают анатомию этой интуиции. Словно канарейки в шахте, они сигнализировали ученым, что человеческая интуиция укоренена в причинной, а не статистической логике. Я полагаю, читателям понравится новый взгляд на любимые парадоксы.
Главы 7–9 наконец-то позволят читателю совершить увлекательный подъем по Лестнице Причинности. Мы начнем в главе 7 с интервенции, рассказывая, как я со студентами 20 лет пытался автоматизировать запросы типа do. В итоге нам удалось добиться успеха, и в этой главе объясняется, как устроен механизм причинного анализа», который дает ответ «да/нет», и что такое оцениваемая величина на рис. 1. Изучив этот механизм, читатель получит инструменты, которые позволят увидеть в диаграмме причинности некие структуры, обеспечивающие немедленный ответ на причинный запрос. Это «поправки черного входа», «поправки парадного входа» и инструментальные переменные – «рабочие лошадки» причинного анализа.
Глава 8 поднимет вас на вершину лестницы, поскольку в ней рассматриваются контрфактивные суждения. Они считаются одной из необходимых составляющих причинности по меньшей мере с 1748 года, когда шотландский философ Дэвид Юм предложил для нее несколько искаженную дефиницию: «Мы можем определить причину как объект, за которым следует другой объект, если за всеми объектами, схожими с первым, следуют объекты, схожие со вторым. Или, другими словами, если бы не было первого объекта, второй бы не существовал». Дэвид Льюис, философ из Принстонского университета, умерший в 2001 году, указал, что на
Читателей ждет приятный сюрприз: теперь мы можем отойти от научных дебатов и вычислить настоящее значение (или вероятность) для любого контрфактивного запроса – и неважно, насколько он изощрен. Особый интерес вызывают вопросы, связанные с необходимыми и достаточными причинами наблюдаемых событий. Например, насколько вероятно, что действие ответчика было неизбежной причиной травмы истца? Насколько вероятно, что изменения климата, вызванные человеком, являются достаточной причиной аномальной жары?
Наконец, в главе 9 обсуждается тема медиации. Возможно, когда мы говорили о рисовании стрелок в диаграмме причинности, вы уже задавались вопросом, стоит ли провести стрелку от лекарства D к продолжительности жизни L, если лекарство влияет на продолжительность жизни только благодаря воздействию на артериальное давление Z (т. е. на посредника). Другими словами, будет ли эффект D, оказываемый на L, прямым или непрямым? И если наблюдаются оба эффекта, как оценить их относительную важность? Подобные вопросы не только представляют большой научный интерес, но и могут иметь практические последствия: если мы поймем механизм действия лекарства, то, скорее всего, сумеем разработать другие препараты с тем же эффектом, которые окажутся дешевле или будут иметь меньше побочных эффектов. Читателя порадует тот факт, что вечный поиск механизма медиации теперь сведен до упражнения в алгебре, и сегодня ученые используют новые инструменты из набора для работы с причинностью в решении подобных задач.
Глава 10 подводит книгу к завершению, возвращаясь к проблеме, которая изначально привела меня к причинности: как автоматизировать интеллект человеческого уровня (его порой называют сильным искусственным интеллектом). Я полагаю, что способность рассуждать о причинах абсолютно необходима машинам, чтобы общаться с нами на нашем языке о политических мерах, экспериментах, объяснениях, теориях, сожалениях, ответственности, свободной воле и обязанностях – и в конечном счете принимать собственные этические решения.
Если бы я мог суммировать смысл этой книги в одной лаконичной и многозначительной фразе, она была бы такой: «Вы умнее ваших данных». Данные не понимают причин и следствий, а люди их понимают. Я надеюсь, что новая наука о причинном анализе позволит нам глубже осознать, как мы это делаем, ведь нет более эффективного способа понять себя, чем смоделировать себя. В эпоху компьютеров это новое знание также добавляет перспективу усилить наши врожденные способности, чтобы лучше постигать данные – как в больших, так и в малых объемах.
Глава 1. Лестница причинности
В начале…
Мне было, наверное, шесть или семь лет, когда я впервые прочел историю об Адаме и Еве в Эдемском саду. Мы с одноклассниками абсолютно не удивились капризным требованиям Бога, который запретил им есть плоды с древа познания. У божеств на все есть свои причины, думали мы. Но нас заинтриговал тот факт, что, когда Адам и Ева вкусили запретный плод, они, как и мы, стали осознавать свою наготу.
Когда мы стали подростками, наш интерес медленно сместился в сторону философских аспектов этой истории (израильские школьники читают Бытие несколько раз в год). Прежде всего нас взволновало, что возникновение человеческого знания было процессом не радостным, а болезненным – его сопровождали непослушание, вина и наказания. Некоторые спрашивали: имело ли смысл ради него отказываться от беззаботной жизни в Эдеме? И можно ли утверждать, что сельскохозяйственные и научные революции, которые случились после, стоили всех трудностей, войн и социальной несправедливости, неотъемлемых от современной жизни?