Чтение онлайн

на главную - закладки

Жанры

Экономика символического обмена
Шрифт:

Пресса смакует маркетинговые тактики, которые музыкальные лейблы используют для продвижения своих песен в чарте. Эти истории служат меломанам хорошим чтивом. Однако роль рейтингов для по­требительской навигации (важнейшего аспекта данной книги) никем из аналитиков особенно не рассматривалась. Во всяком случае, научных работ, посвященных этому вопросу, обнаружить не удалось. Никто никогда прямо не спрашивал у потребителей, оправдывают ли себя покупки, сделанные в соответствии с рейтингом, или нет. Факты указывают на то, что высокий рейтинг подстегивает продажи, но насколько эффективно он сигнализирует о качестве – не установлено. Искушенные потребители относятся к рейтингам скорее скептически. С их точки зрения, рейтинг – это честное предупреждение о весьма и весьма среднем качестве. Новичку для ориентации имело бы смысл воспользоваться сводными данными о песнях и альбомах, долго держащихся в чарте. Получить эту информацию можно либо за плату, что для отдельного потребителя дорого, либо путем кропотливого анализа. Но составить полную картину самому сложно. Даже для экономистов эта задача чересчур трудоемка, и они ограничиваются малой выборкой данных [311] .

311

Strobl E. A., Tucker C. The Dynamics of Chart Success in the U. K.; Bradlow E., Fader P. A Bayesian Lifetime Model for the «Hot 100» Billboard Songs // Journal of the American Statistical Association, Vol. 96, № 454, 2001. P. 368–381.

Еще

одна разновидность рейтингов – профессиональная медиаметрия [312] ; это инструмент, предназначенный для регулирования отношений СМИ и рекламных служб. Потребительской навигации он может служить лишь по касательной. К тому же здесь в полной мере присут­ствует весь набор проблем: косвенность измерений воспринимаемого качества, сомнительная достоверность и усредненность данных. То же относится и к рейтингам нравственности, находящимся в ведении Американской Киноассоциации [313] .

312

Медиаметрия – исследования с целью установить размер и состав аудитории СМИ (см.: Фомичева И. Индустрия рейтингов. Введение в медиаметрию. М.: Аспект Пресс, 2004. С. 138). Здесь рейтинг – это величина реальной аудитории данного СМИ, выраженная в процентах ко всему населению или потенциальной аудитории издания.

313

Hubble J. The Effectiveness of Movie Ratings. Working Paper [on-line], May 7, 1997. [cited Jul. 14, 2003]. Available from URL: <http://www.geocities.com/Athens/6378/pols306.html>.

Рейтинги этого последнего типа хотя и касаются содержания, но никак не указывают на его качество. Они предназначены в основном родителям, как подсказка, какие фильмы можно смотреть детям, а какие нет, а также для ограждения впечатлительных натур от непристойности. Они родились на волне общественного протеста против показа малолеткам неприличных сцен. Крупные компании-мейджоры создали Hays Code и соответствующий Hays Office – регулирующий орган, действовавший с 1930 по 1967 год [314] . В его задачи входило жесткое ограничение в кинопродукции США непристойных выражений, насилия, секса, оскорбления прав верующих, разжигания национальной розни, злоупотребления наркотиками и т. п. [315]

314

Назван по имени его главы Will H. Hays.

315

Джек Валенти, возглавив Киноассоциацию Америки, незамедлительно отменил Hays Code и внедрил новую рейтинг-систему, оценивающую готовые фильмы.

Первоначально рейтинг состоял из четырех ступеней: G, M, R, X (позже M заменили на PG). Две первые позиции разрешали доступ всем, М только предостерегала родителей, что фильм может не подойти младшему возрасту. Третья, R, позволяла детям смотреть ленту в сопровождении взрослых, а последняя, X – была противопоказана детям всех возрастов [316] . Со временем категорию X приравняли к порнографии и запретили во многих штатах. Фильмы с рейтингом G считались дет­скими и выпускались редко; большинство лент выходило в категориях PG и R. В результате первоначальная четырехступенчатая система за малыми исключениями свелась к двухступенчатой. В попытке расширить возможности системы в 1984 г. в рейтинг была введена новая позиция – PG-13, средняя между PG и R. Позже была добавлена категория NC-17. Ее ввели как альтернативу X: планировалось, что эта литера будет обозначать арт-хаусные фильмы, в то время как порнографические ленты по-прежнему будут идти под знаком X. Однако вскоре продюсеры порнофильмов начали выставлять свои работы на рейтинг в качестве арт-хаус-фильмов. Таким образом, NC-17 по существу заменила категорию X. На данный момент картин с рейтингом R производится больше, чем любых других типов, а самый успешный фильм года почти всегда относится к разряду PG-13. Вместо того чтобы выполнять роль нейтрального классификатора, PG-13 стал влиять на тип выпускаемого кино. В 1996 году фильмы с рейтингом PG-13 составили 18,9% от общего количества всех созданных фильмов и в то же время заработали 34,1% сборов кинопроката. Затем PG-13 перевели в категорию фильмов для семейного просмотра. Так кинокомпаниям удалось ввести в ленты больше остроты, секса и насилия, не жертвуя конкурентоспособностью. Продюсеры заранее прикидывают, какая категория им нужна, и снимают картину так, чтобы она встраивалась в определенные рамки. А совсем недавно задача охранения нравственности в кино получила эффектное техническое решение. Появилась специальная программа, позволяющая зрителю при просмотре картин на DVD самостоятельно делать в них купюры, адаптируя для семейного просмотра.

316

Valenti J. The Voluntary Movie Rating System. MPAA, December 1996.

Значение рейтингов для экономики колоссально и однозначно положительно. Благодаря им бизнес обрел почву под ногами: столь необходимая ему обратная связь предложения со спросом установилась наилучшим из всех возможных способом, поскольку ранжирование не порождает для предпринимателей никаких отрицательных внешних эффектов. Для культуры же значение рейтингов неоднозначно. Ей как воздух необходима обратная связь, но более содержательная. Создавая иллюзию потребительской рефлексии, рейтинги скорее сбивают культуру с правильного пути, нежели указывают на него. Они в минимальной степени служат культурной навигации, скорее – это буйки на пути ухудшающего отбора, обозначающие фарватер.

Глава 2.7. Обзор рекомендательных систем [317]

В самом общем виде рекомендация – это прогнозирование оценки до того момента, как человек сам опробовал объект. Прогноз составляется на основе анализа предшествующих предпочтений покупателя или любой другой информации о нем [318] . Услуга состоит в следующем: из всего разнообразия книг, CD, фильмов, ресторанов и т. п. для конкретного потребителя выбирается продукт с наивысшей ожидаемой полезностью [319] .

317

В разделе частично использованы материалы обзорной работы: Adomavicius G., Tuzhilin А. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions // IEEE Transactions on Knowledge and Data Engineering, Vol. 17, № 6, June 2005.

318

С середины 1990-х гг. рекомендательные системы выделились в самостоятельную область научных исследований, которые опираются на достижения когнитивных наук, наработки информационно-поисковых систем, теорию прогнозирования и проч.

319

Это можно записать следующим образом: где С – это множество пользователей (вплоть до многих миллионов), S – группа предлагаемых товаров (тоже миллионы единиц), U – функция полезности, описывающая полезность

предмета S для пользователя С.

На каждого клиента рекомендательной системы [320] составляется индивидуальный профиль, в котором учитываются его потребительские предпочтения, а также (при необходимости) возраст, пол, доход, семейное положение и т. д. Точно так же по определенным правилам описываются и товары. Например, в сервисе по фильмам каждая картина может быть представлена названием ленты, жанром, режиссером, годом выпуска, главными актерами и т. д. Первоначально в базу заносятся оценки потребителей, выставленные уже известным им товарам. Например, в системе MovieLens [321] пользователи начинают с того, что проставляют баллы определенному количеству фильмов, которые они уже посмотрели. Системы способны выдавать рекомендации либо в виде перечня товаров наиболее подходящих данному потребителю, либо в виде списка потребителей, для которых предпочтительны определенные продукты (как подчеркивалось в первой главе, это различие на практике оказывается принципиальным). Рекомендации могут генерироваться тремя способами:

320

Дополнительно о рекомендательных системах см. приложение 1, глава 11.

321

См. приложение 1, раздел 11.8.

1. Контентным: человеку рекомендуют товары, сходные с теми, которые он выбрал ранее.

2. Методом коллаборативной фильтрации: потребителю рекомендуют товары, которые вычисляются по оценкам людей со схожими вкусами, уже опробовавших данный продукт и поделившихся своими суждениями.

3. Гибридным методом, сочетающим в себе два предыдущих.

Кроме перечисленных существуют вспомогательные системы (кратко упоминаются ниже), а также системы социальной навигации, которые не являются рекомендательными и здесь не рассматриваются. В последнем случае предпочтения людей выявляют на основании прямых и косвенных данных: интернет-сообщений, историй пользования системой, гиперссылок и т. д. Они визуализируют взаимодействие человека с компьютером и помогают путешествующим по сети [322] .

322

См.: Terveen L., Hill W. Beyond Recommender Systems: Helping People Help Each Other // Carroll J. (ed.) HCI in The New Millennium. Addison-Wesley, 2001.

2.7.1. Контентные методы выработки рекомендаций

В рекомендательных системах контентного типа полезность товара выводится из потребительской оценки сходных продуктов. Например, для того чтобы посоветовать человеку фильмы, контентная система пытается найти сходство между различными картинами, которые прежде получили у него высокую оценку (одни и те же актеры, режиссеры, жанры и т. д.). Подобные рекомендации основаны на принципе «найдите для меня вещи, подобные тем, что мне нравились в прошлом». В основе контентой рекомендательной системы лежат методы поиска информации [323] , ее сопоставления и фильтрации [324] . Этот подход чаще всего используют для текстов – документов, веб-сайтов, блогов и т. п. Профиль предпочтений клиента формируется на основе информации, которую получают от него либо напрямую, анкетированием, либо косвенно. Контент обычно описывается при помощи ключевых слов [325] . Профиль потребителя, указывающий на его предпочтения, создается путем выявления ключевых слов в контенте, которому данный человек ранее уже вынес оценку. Профиль потребителя и профиль контента могут быть представлены как векторы, а полезность данного контента для данного потребителя определяется величиной угла между ними [326] . В частности, человеку, интересующемуся определенной темой, будут рекомендованы статьи, в которых использовано много терминов (ключевых слов) из его пользовательского профиля.

323

Baeza-Yates R., Ribeiro-Neto B. Modern Information Retrieval. Addison-Wesley, 1999; Salton G. Automatic Text Processing. Addison-Wesley, 1989.

324

Belkin N., Croft B. Information Filtering and Information Retrieval // Comm. ACM, Vol. 35, № 12, 1992. P. 29–37.

325

Например, система Fab, специализирующаяся на рекомендациях веб-страниц, представляет их контент в виде 100 наиболее важных слов. Система Syskill & Webert описывает документы с помощью 128 самых информативных слов. Существуют различные методы вычисления «важности» и «информативности» слов в документах. Например, метод частотности / обратной частотности. Суть его такова: пусть N – некоторое количество документов, которые могут быть рекомендованы пользователям. В части этих документов (ni) встречается ключевое слово kj. Кроме того, предположим, что fij – это количество раз, которое ключевое слово kj встречается в неком конкретном документе dj. Тогда TFij – частота употребления ключевого слова kj в документе dj – определяется как где максимум вычисляется из частотности fz,j всех ключевых слов kz, встречающихся в документе dj. Однако если ключевые слова широко распространены во многих документах, то система не в состоянии корректно выбрать необходимый текст. Поэтому измерение обратной частотности слова (IDFi) часто используется наряду с измерением обычной частотности (Tfij). Обратная частотность для ключевого слова ki обычно определяется как Тогда вес ключевого слова ki в документе dj определяется как а контент документа dj определяется как (Adomavicius G., Tuzhilin A. Toward the next generation of recommender systems…)

326

Это можно записать так: Существуют другие контентные методы, такие как байесов классификатор, машинное самообучение, включающие кластеризацию дерева решений, искусственные нейронные сети.

2.7.1.1. Недостатки

Их в контентном методе несколько. Во-первых, машинный анализ годится не для всяких объектов. Так, сильно осложнена работа с мультимедийными приложениями, графикой, аудио- и видеоматериалами. (Хотя в последнее время в этой области наблюдается бурный прогресс.) Другая проблема данного метода в том, что два разных предмета, представленных одинаковыми профилями, неразличимы. В частности, с помощью контентных систем невозможно отличить хорошую статью от плохой, если их лексикон близок. Это касается и потребительских профилей, поэтому рекомендации, основанные на выборе якобы схожих людей, могут быть низкого качества. На деле оказывается, что профили близки, а люди, стоящие за ними, разные. Еще один очевидный недостаток – узость рекомендаций. Потребителю не могут рекомендовать товары, отличные от тех, которые ему уже знакомы. С другой стороны, ему могут настойчиво предлагать объекты, слишком похожие на те, что ему хорошо известны.

Поделиться:
Популярные книги

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Новые горизонты

Лисина Александра
5. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Новые горизонты

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Любимая учительница

Зайцева Мария
1. совершенная любовь
Любовные романы:
современные любовные романы
эро литература
8.73
рейтинг книги
Любимая учительница

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9

Инвестиго, из медика в маги. Том 6. Финал

Рэд Илья
6. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги. Том 6. Финал

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)