Энциклопедический словарь
Шрифт:
Перечисляя в начале статьи главнейшие свойства Э. тока, многим из которых посвящены отдельные статьи, мы, конечно, должны были начать с нагревания проводников. Ток, проходя по проводникам, нагревает их. Количество теплоты, выделяемое данным током в данной проволоке, прямо пропорционально квадрату силы тока и сопротивлению проводника, а также продолжительности прохождения тока. Так формулируется закон Джоуля Ленца. Заметим, что закон Джоуля Ленца очень просто вытекает из закона Ома и из выражения для энергии Э. тока. Работа, которую ток может совершить в единицу времени, пропорциональна произведению из его силы тока на электродвижущую силу А = с. ei. Ток нагревает провод, т. е. его Э. энергия переходит в тепловую. Следовательно, количество теплоты Q, выделенное током в единицу времени, должно быть также пропорционально произведению ei Q=c1ei, но e=ir; следовательно, Q=c1i2r, а это и есть закон Джоуля Ленца.
Э. ток обладает известным запасом энергии, и эта энергия чрезвычайно многообразно и легко переходит во все прочие виды энергии. Замечу, что на этом энергетическом взгляде на электричество основана возможность подсчета электродвижущей силы гальванического элемента. В элементе совершается химическая работа. Эта работа переходит в электрическую энергию. Механизм передачи безразличен. Работа полученная определяется работой затраченной. Исходя из подобных соображений, Гельмгольц дал формулу для электродвижущей силы элемента, воспользовавшись для этого принципом свободной энергии, введенным им в термодинамику. Этот подсчет не предрешает никаких теорий о сущности гальванического тока. Основанный исключительно из опыта взятых численных соотношениях, он останется верен при всех теориях.
Остается только вкратце рассмотреть различные взгляды на причину электризации при соприкосновении. Таких взглядов существует в сущности два. Одни ученые говорят, что электризация при соприкосновении есть явление физическое. Может быть, при соприкосновении двух металлов происходит какая-либо деформация в эфире, сопровождаемая электризацией металлов. Гельмгольц, которого, вообще говоря, можно причислить к сторонникам этой гипотезы, выражает свое мнение таким образом. Все явления в проводниках первого рода могут быть объяснены, исходя из предположения, что различные химические элементы различно притягивают оба электричества, и что эти силы притяжения действуют только на неизмеримо малых расстояниях, в то время как электричества действуют друг на друга также и на более значительных расстояниях. Электризация при контакте объясняется таким образом разностью в притяжениях, которые прилежащие к месту контакта части металла оказывают на электричества. Любопытно, что взгляды эти не так далеки от взглядов современных сторонников электронной теории. Стоит только слово "электричество" заменить словом "электрон". Контактная теория нашла себе подтверждение в работах лорда Кельвина
Электрическое поле - пространство, в котором могут быть обнаружены каким-либо способом Э. силы.
Электроды.
– Электродами называют части проводников гальванической цепи, погруженный в вещества, подвергаемые действию гальванического тока. Э. устраивают чаще всего из твердых, проводящих ток веществ, т. е. из металла или угля. Жидкие Э. встречаются нередко в лабораторной и заводской практике, примером чему могут служить ртутные Э., а также Э. из других расплавленных металлов. Термин электрод предложен Фарадеем, чтобы им заменить для частных случаев более общий термин "полюсы". Отсюда следует, что электрод может быть характера положительного полюса; такой электрод Фарадей назвал анодом, а электрод характера отрицательного полюса получил название катода. В зависимости от тех химических превращений, которые совершаются при прохождении тока на границе электрод | электролит Э. бывают обратимые и необратимые. Границу эту принято графически обозначать выше поставленной вертикальной чертой, как и вообще границу двух веществ, на которой могут развиваться электровозбудительные силы. Обратимым электродом называют такой, у которого в месте соприкосновения электрода с электролитом, при перемене направления тока, совершается химическое прекращение, как раз обратное тому, что совершалось при первоначальном направлении тока. Э., не удовлетворяющие этому требованию, носят название необратимых. Пример обратимого электрода: тяжелый металл (медь, цинк, кадмий и др.) погруженный в раствор соли того же металла. При прохождении тока от меди к медному купоросу - растворяется медь, при обратном направлении тока медь осаждается. Кроме качественных требований, обратимый электрод часто должен удовлетворять количественным требованиям. Такой случай наблюдается для газоплатиновых электродов, т. е. для платины, погруженной частью в раствор электролита частью же в атмосферу газа, выделяющегося при электролизе, хотя бы, например в атмосферу водорода. Если сила тока обратного будет такова, что у водород платинового анода будет происходить только растворение водорода, но не будет выделения кислорода, такой электрод обратим для водород платинового катода. Обратимые металлические или газо-металлические электроды носят название электродов первого рода. Э. первого рода обратимы для катионов СuЁ, ZnЁ, CdЁ, Hя и т. д., а газо-металлические - для Оўў. Cl' и др. Э. второго рода являются обратимыми для анионов Clў, Brў, Jў и др. На существование обратимости в этих электродах было впервые указано Нернстом, он же дал и теорию этих электродов. Они представляют металлы, покрытые слоем нерастворимых солей этих металлов, погруженные в раствор соли с тем же анионом, как и у нерастворимой соли. Примером может служить ртутный электрод, покрытый слоем каломели (Hg2Cl), или серебряный электрод, покрытый слоем хлористого серебра (AgCl), погруженные в раствор хлористого калия. При прохождении тока в одном направлении, когда электрод является анодом, выделяющийся ион хлора, соединяясь с металлом электрода, образует нерастворимую соль, т. е. как бы хлор "осаждается током на электроде"; когда же электрод становится катодом, хлор нерастворимой соли переходит в раствор. Эта качественная сторона явлений не дает, конечно, полной картины происходящих процессов, и говорит о том, что в таком электроде хлор является как бы металлом, отличающимся только знаком электричества его иона, возможно только для общей характеристики явления. Теория же явления, дающая точное представление, основана на химическом взаимодействии веществ у электрода. Еще сложнее теория обратимых электродов 3-го рода. Эти Э. предложены Лютером, как обратимые для металлов, выделяющих водород из воды и, следовательно, не могущих служить в металлическом состоянии электродами. Остановимся на одном примере обратимого Э. для кальция (Са). Свинцовая пластинка, покрытая слоем смеси солей сернокислого свинца и сернокислого кальция, погруженная в раствор, содержащий хлористый кальций и насыщенные сернокислым свинцом и сернокислым кальцием, представляет, по Лютеру, обратимый Э. для кальция.
Форма и величина электродов бывает самая разнообразная, в зависимости от тех требований, которым они должны удовлетворять. Существенной для электрода является та его поверхность, через которую ток попадает в электролит.
Если ток электричества (J - сила тока) равномерно распределен по всей поверхности электрода (S), тогда величина носит название плотности тока для данного электрода. Для электрохимических целей часто необходимо хотя бы приблизительное знание этой величины; поэтому вычисляют эту величину делением J на S даже и в таких случаях, когда ток только приблизительно равномерно распределен по электроду. За единицу поверхности электрода принимают 100 квадратных сантиметров и обозначают N. D. 100, для измерения же J - обычную величину, т.е. силу тока, равную одному амперу. Так что N. D.100=1,5А обозначает, что через поверхность электрода в 100 квадратных сантиметров проходит ток силой в 1,5 ампера. Из специальных электродов должно упомянуть о каломельном обратимом электроде второго рода, получившем большое распространение, благодаря постоянству и простой конструкции. В сосуд с впаянной снизу платиновой проволокой, на дне которого находится ртуть, покрытая слоем каломели, наливается нормальный раствор хлористого калия, т. е. 74,6 гр. в литре раствора, или 0,1 нормальный. Электровозбудительная сила на границе этого электрода и электролита, по Оствальду, в первом случае равна 0,56 вольт, во втором 0,616 вольт. Электрод этот носит название "постоянный каломельный электрод" и применяется в электрохимии.
Вл. Кистяковский.
Электролитическая диссоциация или ионизация (литер. Svante Arrhenius, "Ueber die Dissociation der in Wasser gelosten Stoffe", "Zeitschr. fur physikalische Chemie", 1887; Sv. Arrhenins, "La dissociation electrolytique des solutions. Rapport an Congres internat a Paris 1900"; Max Roloff, "Die Theorie der Elektrolytischen Dissociation" и др.). Термин "электролитическая диссоциация" предложен Аррениусом в 1887 г. В электролитах, растворенных в воде, и в некотор. других растворителях Аррениус предложил признать особое распадение молекулы на ионы, заряженные положительным и отрицательным электричеством, и назвал это распадение электролитической диссоциацией. Так, например, хлористый калий КCl в водном растворе частью распадается на ион калия с положительным зарядом электричества, на катион К·, и на ион хлора с отрицательным зарядом, анион Cl'; в соляной кислоте молекулы НCl распадаются на катион Н· и анион Сl; в растворе едкого натра NaHO имеются ионы Na· НО', в растворе глауберовой соли Na2SO4, имеются уже двуэквивалентные анионы SO4?, несущие двойной против одноэквивалентного иона заряд, и два иона Na· Na·, или возможны также ионы Na· и NaSO4; триэквивалентные ионы образуются в растворе красной соли K3 Fe(C'N)6; его ионы Fe(CN)6?ў и три К· т. п. Ионы в растворах совершенно свободно перемещаются, только электрические силы, как бы заменяющие химическое сродство, поддерживают в самой малейшей капле раствора равномерное распределение числа положительных и отрицательных электрических зарядов. Новое предположение Аррениуса дало возможность охватить одной стройной теорией обширный ряд явлений, изучаемых в физике, химии, физиологии растений и животных, особенно же новая идея имела благотворное влияние на развитие теоретической электрохимии. Новая теория была названа Аррениусом теорией электролитической диссоциации и английскими авторами (Лодж и др.) теорией ионизации. Основной постулат новой теории противоречил многому, что считалось до ее появления общепризнанным и само собой понятным. Сродства тех частей молекул, который выше названы ионами, например, К· к Cl', одно из наибольших; отсюда казалось само собой понятным, что, благодаря огромным притяжением между такими частями, молекула в этом месте чрезвычайно прочна. Не трудно показать, что и новая теория признает существование огромных притяжений между частями молекул - ионами. Она даже дает возможность приблизительно их вычислить. В этом легко убедиться, если припомнить вычисление, сделанное Гельмгольцем задолго до появления теории Э. диссоциации и приведенное в его лекции, посвященной памяти Фарадея: если миллиграмм-эквивалент катионов и анионов сосредоточить в двух разных точках на расстоянии сантиметра, тогда, чтобы удержать их на этом расстоянии, нужно было бы применить силу, близкую ста тысячам биллионов килограмм. Вычисленная величина не может быть реализирована, но она показывает, что и между отдельными ионами действуют сравнительно значительные силы. Казалось бы, что при действии таких сил невозможно допустить подвижности ионов. Однако, в молекулярной теории жидкостей, чтобы объяснить текучесть, допускается полная подвижность молекул, не смотря на значительные между ними притяжения, достигающие сил нескольких тысяч килограмм на квадратный сантиметр жидкости. Очевидно, и для ионов можно признать подвижность, подобную заведомо признаваемой для молекул жидкостей. Получается аналогия электролитически диссоциированных молекул жидкому состоянию вещества, а не диссоциированных - твердому. Для определения степени Э. диссоциации a, т. е. относительного числа ионизированных молекул к общему числу растворенных молекул, пользуются отношением эквивалентной электропроводности данной концентрации (L) к максимальной эквивалентной электропроводности
С 1883 г. Аррениус занимался изучением электропроводности. Он нашел, что для объяснения изменений электропроводности электролитов должно признать два вида молекул растворенного электролита: активные, обусловливающие проводимость данного раствора, и не активные, не влияющие на величину электропроводности. По мере разбавления число активных молекул, названных впоследствии электролитически диссоциированными, увеличивается и в достаточно разбавленных растворах все молекулы растворенного
– a и еще na ионов. Это увеличение общего числа молекул и соответствует, как указал Аррениус, Вант-Гоффовскому i, т. е. i = 1 - a + na или i = 1 + a(n - 1). Вычислив таким образом i из данных для электропроводности растворов, Аррениус сравнил его для соответствующих концентраций тех же солей с Вант-Гоффовским i. Оказалось, что для большинства электролитов получается близкое совпадение величин. Приведем пример из позднейших исследований, при котором особенно поразительно совпадение величин. В первом столбце концентрация раствора, т. е. число грамм молекул вещества, растворенных в литре; i второго столбца вычислено из опытов понижения замерзания растворов хлористого калия, произведенных независимо мной и Ролоффом; данные для a, необходимые для вычислений i третьего столбца, взяты из превосходных исследований электропроводности Кольрауша.
i i=1+a(n-1) 0,236 1,83 1,84 0,476 1,78 1,79 0,965 1,73 1,76 1,989 1,71 1,72 Для целого ряда солей, напр., хлористого кадмия, сернокислых солей двуэквивалентных металлов совпадение величин было неудовлетворительное. Отступления достигали десятков процентов. Но и в этом случае изучение переноса ионов этих солей показало, что причина отступлений лежит не в теории, а в свойстве молекул этих солей образовывать двойные молекулы, которые уже диссоциируют иначе, чем простые молекулы; следовательно, общее число молекул в растворе таких солей уже не может соответствовать теоретическому, при котором принимается обыкновенная ионизация т. е., напр., CdCl2 на Cd··и HCl? двойная же молекула Cd2Cl4 ионизирует на Cd·· и CdCI?4. В настоящее время теория Э. диссоциации - это теория большинства явлений, изучаемых в электрохимии, т. е. электропроводности, переноса ионов, электролиза, электровозбудительных сил и т. д. Все ее завоевания в этих областях изложены в электрохимии. Остается вкратце указать на применение теории Э. диссоциации в химии. В химии, особенно в аналитической, изучают целый ряд реакций между электролитами; эти реакции протекают мгновенно. Хлористое серебро мгновенно осаждается хлористым калием из раствора азотнокислого серебра. Причина этих быстрых реакций в том, как указал Аррениус, что они происходят с ионами. Например: Ag·+ NО3ў·+ К·+Clў= AgCl + К·+ NO3ў, вычеркнув одинаковые ионы обеих частей равенства, получаем: Ag· + Clў = AgCl, т. е. подобно тому как при растворении соли наступает мгновенное распадение на ионы, так и при осаждении ионы мгновенно соединяются. Из раствора бертолетовой соли КClО3, или хлороформа СНCl3 азотнокислое серебро хлора не осаждает; причина, согласно теории свободных ионов, заключается в том, что в водных растворах KClO3 ионов Cl' нет, также и в растворах хлороформа в спирту и других растворителях. Бертолетова соль ионизирует на К· и ClO3ў. Еще поразительнее пример представляют соли железа. В растворе солей окиси железа, т. е. хлорного железа и многих других солей, находится ион Fe···. Реакциями на него служат, во первых, осаждение нерастворимого гидрата окиси железа, которое очень легко вызывается даже слабощелочной реакцией, интенсивная окраска таких растворов в красно-бурый цвет при прибавлении ничтожного количества роданистого аммония и др. Ничего подобного не наблюдается для растворов красной соли; из них даже концентрированный раствор едкого кали не осаждает окиси железа и т. п. Все это объясняет теория ионизации: в красной соли иона F··· нет и K3Fe(CN)6 диссоциирует не на 3К·, Fe···и 6CN', а на 3К· и Fe(CN)6ўўў. Блестящий пример применимости ионной теории представляет объяснение давно известного факта, что в растворе кислоты, щелочи или соли менее растворима соль, имеющая ион, общий с первыми электролитами, чем в чистом растворителе. Так, например, хлористый калий частью осаждается из раствора при прибавлении крепкой соляной кислоты, или раствора едкого кали. Нернст указал, что подобно тому как упругость паров хлористого аммония, распадающегося при испарении на аммиак и хлористо-водородный газ, уменьшается от прибавления аммиака или хлористо-водородного газа, также и прибавление иона хлора в виде соляной кислоты или едкого кали, понижает растворимость хлористого калия, распадающегося на ионы калия и хлора. Аналогия, открытая Нернстом, нашла себе количественное подтверждение при изучении Нойесом понижения растворимости мало растворимых веществ, к которым строго применимы законы Вант-Гоффа. Точная теория получила известное значение и в термохимии. Термонейтральность солей и постоянство теплоты нейтрализации крепких кислот щелочами были объяснены этой теорией. Теплота распадения на ионы для большинства солей малая величина. Теплота же обмена ионами при полной диссоциации - величина, равная нулю. Если сливать растворы двух солей вполне ионизированные, тогда никаких тепловых эффектов и не происходит; если же ионизация солей неполная, тогда тепловые эффекты наблюдаются в зависимости от величины теплоты ионизации. При нейтрализации вполне ионизированной щелочью такой же кислоты, т. е. в очень разбавленных растворах, как видно из уравнения K·HOў+HClў=H2O+KClў, если отбросить от обеих частей равенства равные ионы, происходит реакция образования воды из ее ионов H·+HOў=H2O. Теплота этой реакции, равная 13700 малых калорий для эквивалентных количеств вещества (грамма водорода и 17 грам. гидроксила), и наблюдается, как постоянная величина при нейтрализации всех крепких, т. е. электролитически диссоциированных кислот крепкими же основаниями. Отступления от числа 13700 калорий для нейтрализации оказались только для слабых, т. е. не вполне ионизированных даже в разбавленных растворах кислот. Эти отступления позволили вычислить степень Э. диссоциации изучаемой кислоты. Для опыта выбираются такие условия, чтобы применяемые соли и щелочи были вполне ионизированы. Следовательно, все отступления от числа 13700 происходят только от теплового эффекта ионизации кислоты. Если величина его известна, а Аррениус ее вычислил теоретически из изменения степени ионизации с температурой, тогда отступление от 13700 калорий, деленное на весь тепловой эффект ионизации, дает долю неионизированной кислоты. Полученные таким образом данные совпали с данными из электропроводности. При этих работах вполне выяснился характер отдельных кислот. Крепость кислоты, термин, которым теперь заменили прежде применявшийся "жадность" и который не должно смешивать с концентрацией кислоты, определяется ионизацией, т. е. степенью Э. диссоциации. Дальнейшее применение теории Э. диссоциации связано с одним из характерных признаков, применяемых в аналитической химии, которым должно считать окраску раствора. Известно, что растворы окиси меди окрашены в голубой цвет, растворы солей окиси железа - в желтый, соли марганцовой кислоты в крепких - в красно-бурый, в разбавленных - в малиновый цвет. Теория Э. диссоциации объяснила, как причину общей окраски солей данного металла или кислоты, так и отступления от этой окраски, наблюдаемый или для отдельных солей, или при разбавлении. Общая окраска солей данного металла или данной кислоты представляет окраску, свойственную иону металла или аниону остатка кислоты; так, голубая окраска медных солей зависит от катиона Сu··, желтая - от Fe··· и малиновая - от аниона МnО4'. Нужно сейчас же подчеркнуть, что окраска зависит также от числа зарядов электричества, находящихся на ионе; так, ион Fe··· солей окиси железа - желтого цвета, а ион Fe·· солей закиси бесцветен. Отступления от общей окраски ионов объясняются или окраской недиссоциированных частей молекулы, или появлением новых окрашенных ионов. Так, изменение окраски с разбавлением соли объясняется тем, что окрашенные неионизированные молекулы заменяются иначе окрашенными ионами. Резкая окраска растворов солей окиси железа при прибавлении роданистого калия объясняется образованием комплексных ионов, заключающих железо и остаток роданистой кислоты. Ярко розовая окраска, получаемая при прибавлении щелочи к бесцветному раствору фенолфталеина, объясняется тем, что фенолфталеин - слабая, неионизированная кислота, а образующаяся соль этой кислоты диссоциирует на ионы, из которых анион резко окрашен. Сильнее всего электролитически диссоциируют соли. Большинство солей щелочных металлов уже в 0,001 нормальных растворах нацело диссоциированы. Меньше ионизируют соли тяжелых металлов синильной, щавелевой и др. кислот, равно как и все соли металлов платины, золота, ртути, кадмия. Такие мало ионизированные соли обладают наклонностью в образованию комплексных ионов. Таковы соли: К3Fе(СN)6, описанная выше, также KAg(CN)2, K2Ni(CN)4 и др., ионизирующие на К· и комплекс Ag(CN)2 или 2К· и комплекс Ni(CN)4. Для таких солей часто наблюдаются и соответственные комплексные кислоты, напр., Н3Fе(СN)6, хотя кислоты вообще менее стойки и часто распадаются на составляющие их части. Самыми крепкими кислотами в водных растворах являются соляная, бромистоводородная, иодистоводородная и азотная кислоты; уже слабее серная и фтористоводородная, еще слабее уксусная, синильная и другие органические кислоты. Такое относительное положение кислот определилось из изучения в водных растворах их электропроводности, их влияния на скорости химических реакций, из скорости растворения в них металлов и мрамора и др. нерастворимых в воде солей, из влияния их на величины электровозбудительных сил, из отступлений от теплоты нейтрализации и т. п. Крепкими щелочами, т. е. сильно ионизированными в водных растворах, являются гидраты окисей щелочных и щелочноземельных металлов, слабыми
– аммиак и некоторые органические основания. Особенно хорошо изучены методом электропроводности Оствальдом слабые кислоты и Бредигом слабые щелочи. Оствальд даже дал общий закон для изменения a, т. е. степени ионизации с разбавлением. Этот закон подтвердился только для слабых кислот и оснований; предполагавшееся в начале его общее теоретическое значение не оправдалось для крепких кислот и всех солей. Как указал Нернст, растворители обладают всегда большой диэлектрической постоянной.
Вода до последнего времени была известна, как обладающая наибольшей диэлектрической постоянной, и действительно водные растворы наилучше проводят ток. В последнее время открыто, что безводная синильная кислота (HCN) обладает немного большей диэлектрической постоянной, чем вода, и оказалось, что многие из растворимых в ней веществ больше ионизированы, чем в воде. Зависимость между диэлектрической постоянной и способностью вызывать ионизацию пока только очень грубое приближение к наблюдаемым фактам и во многих случаях не подтверждающееся, поэтому пытались найти другие зависимости. Дютуа и Астон указали на связь способности растворителя вызывать ионизацию с уплотнением его молекул. Те растворители вызывают ионизацию, молекулы которых в жидком состоянии соединены в двойные или тройные и даже более сложные комплексы. Таким образом открылось обширное поле для исследования свойств растворителей в связи с молекулярным строением жидкостей. Вл. Кистяковский.