Чтение онлайн

на главную - закладки

Жанры

Шрифт:
Проверьте ваши часы

Задача решается просто, если догадаться, что перед выходом из дома дядюшка Генри мог завести свои остановившиеся часы и по ним определить, сколько времени его не было дома. Поставить правильно стрелки часов дядюшка Генри, разумеется, не мог, так как не знал точное время, но ничто не мешало ему запомнить, сколько было на часах, когда он уходил из дома.

Вернувшись, дядюшка Генри взглянул на часы и узнал, сколько времени ушло у него на дорогу туда и обратно и на визит в бакалейный магазин. По часам, висевшим в магазине, дядюшка Генри узнал, сколько времени он там пробыл, и вычел это время из общей продолжительности своего похода в город. Тем самым дядюшка Генри узнал, сколько времени заняла у него дорога туда и обратно. Поскольку дядюшка

Генри ходит с постоянной скоростью, то на дорогу от городка до дома времени ушло вдвое меньше. Прибавив время, которое ушло на обратную дорогу, к точному времени своего выхода из магазина, которое он установил по висевшим там часам, дядюшка Генри узнал точное время своего возвращения домой и смог перевести стрелки своих часов так, что те стали показывать точное время.

Коль скоро мы заговорили о стрелках часов, то нельзя не упомянуть об одном каверзном вопросе, на который девять людей из десяти отвечают неправильно. Сколько раз от полудня до полуночи часовая стрелка совпадает с минутной? Большинство людей отвечают, что стрелки совпадают 11 раз, хотя в действительности стрелки совпадают 10 раз. Желающие могут убедиться в этом, переводя стрелки на своих часах.

Этот несколько удивительный факт позволяет легко и просто решить задачу, которая кажется неразрешимой без использования алгебраических уравнений. Часы имеют секундную стрелку, соосную с часовой и минутной стрелками. В полдень все 3 стрелки сливаются в одну. Успевают ли все три стрелки совпасть еще раз, прежде чем наступит полночь?

Выясним сначала, много ли на окружности циферблата найдется точек, в которых часовая стрелка совпадает с минутной. Казалось бы, что таких точек 12, но, как мы уже знаем, в промежуток с 12 часов дня до 12 часов ночи минутная стрелка совпадает с часовой только 10 раз. Поскольку в полдень и в полночь часовая стрелка также совпадает с минутной, то это означает, что всего на окружности циферблата имеется 11 различных точек, в которых часовая стрелка совпадает с минутной. Как показывают аналогичные рассуждения, секундная стрелка совпадает с минутной в 59 различных точках на окружности циферблата. Следовательно, точки совпадения минутной стрелки с часовой разделены И равными промежутками времени, а точки совпадения минутной стрелки с секундной разделены 59 равными промежутками времени.

Пусть A — величина любого из 11 промежутков, а B — любого из 59 промежутков (обе величины измерены в одинаковых единицах времени).. Если у чисел A и B есть общий делитель K, то на окружности циферблата найдется K точек, в которых оба совпадения (минутной стрелки с часовой и секундной стрелки с минутной) происходят одновременно. Но числа 11 и 59 не имеют общего делителя. Следовательно, с полудня до полуночи часовая, минутная и секундная стрелки ни разу не совпадают. Иначе говоря, все 3 стрелки совпадают только в 12 часов дня и в 12 часов ночи.

А вот две шуточные задачи о часах, на которых непременно «даст осечку» кто-нибудь из ваших друзей.

1) Часы с боем успевают пробить б часов за 5 с. За сколько времени они пробьют 12 часов?

2) Дядюшка Генри так устал с дороги, что лег спать в 9 часов вечера с намерением встать в 10 часов утра. Перед сном он поставил будильник на 10 часов и через 20 мин уже безмятежно спал. Сколько времени успеет поспать дядюшка Генри до звонка будильника?

Ответы на обе задачи приведены в конце книги.

Истина в вине

В последний день каникул Боб и Элен сообщили дядюшке Генри, что решили пожениться.

Дядюшка Генри. Рад за вас, мои милые. Нужно отметить этот знаменательный день!

Дядюшка Генри достал из погреба 5 бутылок вина, припасенных

для торжественного случая, но тут возникло непредвиденное затруднение: трое обитателей хижины никак не могли прийти к единому мнению относительно того, какую бутылку откупорить первой.

Дядюшка Генри. Постойте, я знаю, как решить спор! Выстроим все бутылки в ряд и пересчитаем их по разработанной мной системе. Вот как это делается: раз, два, три, четыре, пять…

Дядюшка Генри. …шесть, семь, восемь, девять…

Дядюшка Генри. …десять, одиннадцать, двенадцать, тринадцать… Понятно?

Боб. Понятно-то, понятно, но сколько вы еще собираетесь считать?

Дядюшка Генри. Как вы помните, в 1976 г. мы праздновали 200-летие независимости. Вот я и досчитаю до 1976 г.

Элен (со стоном). Милый дядюшка, на это у вас уйдет еще 200 лет. Впрочем, минутку… Есть идея! Считать по бутылкам совсем не обязательно! Я могу вам сразу сказать, на какой бутылке окончится счет.

Элен. Число 1976 придется на вторую бутылку.

Дядюшка Генри не поверил Элен и упрямо продолжал пересчитывать бутылки. Через 15 мин он досчитал до 1976 и убедился, что счет, как и предсказывала Элен, окончился на второй бутылке.

Дядюшка Генри. Как это тебе удалось, Элен?

Не могли бы и вы предложить способ, позволяющий безошибочно определять, на какой бутылке закончится счет, независимо от того, до какого числа мы будем считать?

Арифметика вычетов

Элен догадалась, что утомительного счета на бутылках от 1 до 1976 можно избежать, если воспользоваться так называемой арифметикой вычетов, или теорией сравнений. Два числа a и b называются сравнимыми по модулю c, если при делении на с они дают одинаковые остатки. Число c называется модулем сравнения, а остаток от деления любого числа на c — вычетом этого числа по модулю c.

Обычные часы могут служить прекрасным примером конечной арифметики вычетов по модулю 12, содержащей 12 чисел. Действительно, вычет числа 12 по модулю 12 равен 0 (то есть число 12 сравнимо с нулем по модулю 12). Предположим, что на ваших часах сейчас 12 часов. Сколько будет на ваших часах через 100 часов? Разделив 100 на 12, вы узнаете, что остаток от деления равен 4 (число 100 сравнимо с числом 4 по модулю 12). Значит, через 100 часов на ваших часах будет 4 часа.

Теперь вам ясно, что метод дядюшки Генри эквивалентен арифметике вычетов? Единственное отличие состоит в том, что каждая из 3 бутылок, стоящих в середине, соответствует двум числам, поскольку эти бутылки приходится считать и слева направо, и справа налево. Счет 8 приходится на вторую бутылку, после чего весь цикл повторяется. Следовательно, метод дядюшки Генри эквивалентен арифметике вычетов по модулю 8.

Поделиться:
Популярные книги

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Отморозок 3

Поповский Андрей Владимирович
3. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 3

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Орден Багровой бури. Книга 6

Ермоленков Алексей
6. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 6

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Я тебя не отпущу

Коваленко Марья Сергеевна
4. Оголенные чувства
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не отпущу

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Попаданка 2

Ахминеева Нина
2. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 2

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4