Эта идея должна умереть. Научные теории, которые блокируют прогресс
Шрифт:
Однако назвать теорию струн в качестве единственного ответа на вопрос, какой научной идее пора в отставку, было бы излишним упрощением. Да, идея унификации посредством теории струн уже давно себя изжила, но эта идея – всего лишь одна из обширного круга ошибочных теорий, появившихся в те же годы. В их число входят схемы так называемого Великого объединения, постулирующие существование новых взаимодействий и частиц и обычно ссылающиеся на некую новую «суперсимметрию», которая связывает известные взаимодействия и частицы с невидимыми «суперпартнерами». Надо сказать, что помимо обнаружения предсказанной частицы Хиггса, еще одним великим открытием, сделанным на Большом адронном коллайдере, был тот факт, что этих суперпартнеров, предсказанных многими теоретиками, не существует.
Эпоха до и после 1974 года принесла нам не только теорию струн, Великое объединение и
«Естественность» стала частью спекулятивной картины, появившейся в середине 1970-х: сложная новая физика, включающая ненаблюдаемые струны и ненаблюдаемых суперпартнеров, постулированная для очень коротких расстояний, причем «естественная» теория и была тем единственным, что оставалось видимым для нас. В этой картине как раз техническая «естественность» гарантирует, что мы не можем видеть никаких сложностей, привнесенных ненаблюдаемо малыми струнами или суперпартнерами.
Уилсон был одним из первых, кто указал, что Стандартная модель является в основном «естественной», хотя и не полностью таковой, имея в виду поведение частицы Хиггса. Сначала он доказывал, что это означает, что с энергиями Большого адронного коллайдера (БАК) мы должны увидеть не частицу Хиггса, а что-то другое. Сторонники идеи суперпартнеров доказывали, что такие частицы должны существовать примерно при таких же энергиях, как и частица Хиггса, поскольку – если так – их можно было бы использовать, чтобы отменить «неестественность». Задолго до того, как запустили БАК, Уилсон отмел этот аргумент как грубо ошибочный, решив, что нет никаких веских причин не увидеть «неестественную» частицу Хиггса. Чувствительность его поведения к тому, что происходит на очень коротких расстояниях, не является веским аргументом против этого, поскольку мы просто не знаем, что именно происходит на таких расстояниях.
Наблюдение в БАК частицы Хиггса (но не суперпартнеров) вызвало среди теоретиков великое оцепенение. Случилось нечто такое, чего просто не могло быть, – в этом были согласны все доказательства, полученные за последние 40 лет и уже закрепленные в учебниках. Выдвигаются предположения, что это еще одно свидетельство в пользу существования Мультивселенной. С этой «антропной» точки зрения, пусть что-то происходит на коротких расстояниях где-то в далеких вселенных-пузырьках, разбросанных по Мультивселенной, но в нашей Вселенной-пузырьке мы видим нечто «неестественно» простое, потому что иначе нас бы здесь не было. Появление таких доводов показывает, что отправить в отставку аргумент «естественности» (вместе с запредельной сложностью теории струн и суперпартнеров) нужно было уже давно.
Коллапс волновой функции
Фримен Дайсон
Почетный профессор физики, Институт перспективных исследований. Автор книги A Many-colored Glass: Reflections on the Place of Life in the Universe («Разноцветное стекло: Размышления о месте жизни во Вселенной»).
Девяносто лет назад Эрвин Шрёдингер придумал волновую функцию как метод описания поведения атомов и других маленьких объектов. Согласно правилам квантовой механики, движение объектов непредсказуемо. Волновая функция говорит нам только о вероятностях возможных движений. Когда объект наблюдается, наблюдатель видит, где тот находится, и неопределенность движения исчезает. Знание устраняет неопределенность. Здесь нет никакой загадки.
К сожалению, те, кто пишет о квантовой механике, часто используют выражение «коллапс волновой функции», чтобы объяснить то, что происходит, когда объект наблюдается. Эта фраза вводит в заблуждение, наводя на мысль, что сама волновая функция является физическим объектом. Физический объект может коллапсировать, если врезается в препятствие. Но волновая функция не может быть физическим объектом. Волновая функция – это описание вероятности, а вероятность – это признание в
Квантовые скачки
Дэвид Дойч
Физик, Оксфордский университет. Автор книги The Beginning of Infinity: Explanations That Transform the World [18] . Лауреат премии Edge.org в области компьютерных наук.
Термин «квантовый скачок» вошел в повседневный обиход как метафора большого изменения, нарушающего непрерывность. Он также широко распространен в обширной, но весьма унылой области лженауки и мистицизма.
18
Дэвид Дойч. Начало бесконечности. Объяснения, которые меняют мир / пер. Марии Талачевой. М.: Альпина нон-фикшн, 2017.
Этот термин пришел из физики и действительно используется физиками (хотя редко употребляется в печатных работах). Он указывает на тот факт, что множество состояний квантовой физической системы часто бывает дискретно. Однако в квантовой физике нет такого явления, как квантовый скачок. Согласно законам квантовой теории, изменение всегда непрерывно и в пространстве, и во времени. Хорошо, возможно, некоторые физики всё еще признают одно исключение, а именно так называемый коллапс волновой функции, когда объект сознательно и намеренно наблюдается. Но эта бессмыслица – не та бессмыслица, которую я в данном случае имею в виду. Я говорю о заблуждениях, относящихся даже к субмикроскопическому миру, например таких: «Когда электрон в состоянии высокой энергии переходит на уровень с более низкой энергией, испуская фотон, он совершает квантовый скачок с одной орбиты на другую, не проходя через промежуточные состояния».
Или еще хуже: «Когда электрон в туннельном диоде подходит к барьеру, на проникновение через который у него не хватает энергии (так что по законам классической физики он бы отскочил), квантовый феномен туннелирования позволяет ему таинственным образом появиться по другую сторону барьера, при этом не побывав в районе, где у него была бы отрицательная кинетическая энергия».
Правда заключается в том, что в таких ситуациях электрон имеет не какую-то одну энергию или позицию, а набор энергий и позиций, и сам этот допустимый набор может изменяться со временем. Если бы весь ряд энергий туннелирующей частицы был ниже требуемого для преодоления барьера, то она бы действительно отскочила. А если бы электрон в атоме действительно был на дискретном уровне энергии и не произошло бы никакого вмешательства, способного это изменить, то электрон никогда бы не совершил переход ни к какой другой энергии.
Квантовые скачки являются примером того, что было принято называть «действием на расстоянии»: когда что-то в одном месте оказывает воздействие в другом месте без посредничества чего-либо физического. Ньютон называл эту идею «таким великим абсурдом, что, думаю, ни один человек, обладающий компетентным научным мышлением в философских вопросах, в него не впадет» [19] . Эта ошибка имеет аналоги в областях, очень далеких от классической и квантовой физики. Например, в политической философии квантовый скачок называется революцией, и абсурдное заблуждение заключается в том, что прогресса будто бы можно добиться, насильственно уничтожив существующие политические институты и начав всё на пустом месте. В философии науки – это идея Томаса Куна о том, что наука идет вперед через революции, то есть через победы одной научной школы над другой, поскольку сознательно изменить собственные «парадигмы» не способна ни та, ни другая сторона. В биологии аналог квантового скачка называется сальтацией – появлением новой адаптации уже в следующем поколении, и абсурдная теория, допускающая столь стремительные эволюционные изменения, именуется сальтационизмом.
19
Письмо Ричарду Бентли, 25 февраля 1693 г., цит. по: Richard S. Westfall. Never at Rest: A Biography of Isaac Newton. Cambridge University Press, 1983. С. 505. – Примеч. авт.
Невеста на откуп
2. Невеста на откуп
Фантастика:
фэнтези
рейтинг книги
Прорвемся, опера!
1. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Темный Лекарь 3
3. Темный Лекарь
Фантастика:
фэнтези
аниме
рейтинг книги
Адвокат
1. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Кодекс Крови. Книга VI
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Честное пионерское! Часть 3
3. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Графиня Де Шарни
Приключения:
исторические приключения
рейтинг книги
