Эволюция Вселенной и происхождение жизни
Шрифт:
Джордано Бруно был знаком с текстами Лукреция и стал одним из первых, кто в эпоху Возрождения поддержал идею о безбрежности пространства и бесчисленности звезд. По его представлениям, существовало бесконечное число небесных тел, похожих на Землю. В этом отношении он опередил Коперника, Кеплера и даже Галилея, хотя, надо сказать, Бруно не был астрономом и не мог наблюдениями подкрепить свои идеи.
Третья возможность, обсуждавшаяся в древние времена, заключалась в том, что мир частично конечен, а частично бесконечен. Согласно этой идее, наш материальный мир похож на остров в бесконечной Вселенной. Это была идея стоиков, последователей Зенона (336–246 до н. э.). Популярное в XIX веке представление о том, что все заключено в нашем Млечном Пути, имеет некоторое сходство с идеями стоиков. С другой стороны, конкурирующая
Закон тяготения Ньютона стал отправной точкой для строгой математической космологии, но он же оказался источником временных трудностей. Любопытные письма, которыми обменивался Ньютон с теологом Ричардом Бентли зимой 1692/93 года, демонстрируют зачатки этого нового мышления. Бентли видел в науке лишь орудие для своей борьбы с атеизмом. Наука выявляет рациональные законы природы (такие как закон тяготения), но предполагают ли они существование (или вмешательство) сверхъестественного существа? Бентли решил попросить Ньютона прокомментировать происхождение мира, поскольку Ньютон сам был глубоко религиозным человеком и в то же время величайшим знатоком физики.
Бентли задавал Ньютону острые вопросы; среди них был вопрос о том, как будет вести себя вещество, равномерно рассеянное в пространстве. Ньютон ответил, что вещество будет оставаться в равновесии, если силы притяжения, действующие на каждую частицу с разных направлений, будут уравновешены. Ньютон сравнивал эту ситуацию с иглами (разумеется, с бесконечным числом игл!), стоящими на кончиках. Даже малейшее нарушение равновесия может привести к катастрофическому коллапсу. Поэтому для прошлого и нынешнего существования звездной Вселенной, в которой действует гравитация, по-видимому, требуется невероятно точная «настройка». Ньютон допускал, что это могла бы осуществить и божественная сила. Это было именно то, чего добивался Бентли и что совпадало с желанием Ньютона увидеть «отпечатки пальцев» Бога в природе. Сегодня мы менее склонны к мысли, что существование Бога можно обосновать с помощью временных загадок физической природы. В этом вопросе многие современные ученые — как верующие, так и неверующие — проявляют близость к представлениям математика Блеза Паскаля (1623–1662), высказанным в его глубоких «Мыслях». Бог для Паскаля — это скрытый Бог; поэтому Паскаль предпочитал не всматриваться в «небеса и птичек» в поисках доказательств Его существования.
В 1895 году Хуго фон Зелигер пришел к выводу, что под действием ньютоновской гравитации бесконечная евклидова Вселенная с однородно распределенными звездами не может пребывать в абсолютном покое. Фактически, при этих условиях невозможно вычислить значение силы, действующей на частицу в заданной точке пространства. Но природа не может пребывать в таком неопределенном состоянии. Эта новая проблема старой модели мира побудила Зелигера к введению небольшой модификации в закон тяготения Ньютона, которая чуть-чуть ослабляет гравитационную силу дополнительно к ее обратной квадратичной зависимости. Эта модификация сходна с более поздним предложением Эйнштейна добавить так называемую космологическую постоянную в его уравнения общей теории относительности, чтобы предложенная им модель конечной Вселенной могла оставаться в состоянии покоя.
Открытие неевклидовой геометрии в XIX веке в корне изменило подход к этой проблеме (см. главу 15). Можно иметь конечную Вселенную и в то же время не мучиться над каверзным вопросом о крае Вселенной. Так что Вселенная галактик может быть как конечной, так и бесконечной. Особый случай — однородная и изотропная Вселенная. Поскольку из своей Галактики мы видим мир изотропным (одинаковое число галактик в разных направлениях), то, скорее всего, наша Вселенная на достаточно больших масштабах однородна, если только мы не находимся в ее центре. Но это последнее противоречило бы принципу Коперника.
Что касается ограниченности Вселенной, то существует одно космологическое наблюдение, которое можно провести невооруженным глазом и очень легко понять. Как известно, ночью темно.
Но
8
Генрих Ольберс (1758–1840) был немецким физиком и астрономом. Этот парадокс, сформулированный им в 1823 году, отмечали еще раньше некоторые другие астрономы (Кеплер, Галлей, Шезо).
В приведенном выше рассуждении есть одно неявное предположение, которое скрыто во фразе «рано или поздно». Когда мы смотрим вдаль, мы видим прошлое. А это означает: чтобы каждый луч зрения наткнулся на звезду, в прошлом должно быть достаточно времени. В молодой Вселенной парадокс Ольберса не возникает. Таким образом, Вселенная может быть даже бесконечно большой, если при этом ее возраст ограничен. Ночное небо освещено лишь конечным числом звезд, а именно теми, чей свет успел дойти до нас за время жизни Вселенной. Поэтому на самом деле далеко не каждый луч зрения натыкается на поверхность звезды (рис. 23.2). По современным расчетам, возраст Вселенной составляет около 14 млрд лет. Это должен быть «временной край» Вселенной (рис. 23.3). У Аристотеля Вселенная имела загадочную границу в пространстве. А для некоторых ученых прошлого граница во времени представляла столь же серьезную концептуальную проблему.
Любопытно, что именно на такое решение парадокса Ольберса — предполагая конечный возраст Вселенной — намекал поэт и писатель Эдгар Аллан По в своей космологической поэме в прозе «Эврика», опубликованной в 1848 году. Он писал: «Если бы череда звезд была бесконечной, то фон неба выглядел бы равномерно светящимся, подобно Млечному Пути, так как не было бы абсолютно ни одной точки этого фона, на которой не оказалось бы звезды. Поэтому единственным способом объяснить те пустоты, которые наши телескопы находят в бесчисленном множестве направлений, было бы предположение, что расстояние до этого невидимого фона так велико, что ни один луч от него пока еще не смог добраться до нас».
Рис. 23.2. Согласно парадоксу Ольберса, ночное небо должно сверкать как солнечный диск в том случае, earn Вселенная бесконечно велика и бесконечно стара, поскольку тогда на каждом луче зрения должна попасться звезда. На этой схеме мы располагаемся в центре окружности.
Рис. 23.3. Эта фотография «сверхглубокого поля», полученная космические телескопом «Хаббл», показывает, что за звездами нашей Галактики все небо заполнено другими галактиками и дырами между ними, где очень мало или совсем нет еще более далеких галактик. Мы можем увидеть только конечное (хотя и очень большое — свыше 100 млрд) число галактик, так как Вселенная имеет конечный возраст и излучение слишком далеких галактик еще не успело дойти до нас.
В 1917 году Эйнштейн расширил концепцию кривизны пространства, распространив ее приложение от одиночных звезд ко Вселенной в целом. В космологических построениях доминирует гравитация. Подход к гравитации, пространству и времени, сформулированный в общей теории относительности, в корне отличается от предшествовавших концепций. Поэтому неудивительно, что с того момента, как на сцену вышла общая теория относительности, «Вселенная уже не та, какой она была прежде». Одной из наиболее ярких примет этих изменений была созданная Эйнштейном модель статической, конечной, но при этом безграничной Вселенной. Как же Эйнштейн пришел к такой модели?