Чтение онлайн

на главную - закладки

Жанры

Эволюция Вселенной и происхождение жизни
Шрифт:

В общей теории относительности «материя определяет геометрию пространства-времени, а сама геометрия определяет, как должна двигаться материи». Эйнштейн и Карл Шварцшильд сначала применили эту теорию к Солнечной системе, сделав естественное предположение, что на больших расстояниях влияние Солнца на общую геометрию исчезает. Когда мы удаляемся от источника гравитации, пространство принимает ту же форму, как и в частной теории относительности, то есть становится плоским. Такое предположение было вполне адекватным при описании пространства-времени вокруг одиночной звезды. Но как быть со всей Вселенной? В 1917 году Эйнштейн опубликовал абсолютно новую модель мира. Прежде некоторые, например Шварцшильд, высказывали идею о том, что своей кривизной пространство напоминает сферу,

но лишь теперь эта идея получила связь с физической реальностью. В своей модели Эйнштейн хотел обойти трудности, связанные с бесконечностью. Но эта модель к тому же оказалась простой, что особенно привлекло Эйнштейна, чей образ мыслей всегда руководствовался необходимостью увидеть особую прелесть в фундаментальной простоте природы.

В качестве основы для своей теории Эйнштейн использовал принцип Маха. Эрнст Мах (1838–1916) предполагал, что свойство материального объекта сопротивляться движению, называемое инерцией, обусловлено его взаимодействием со всей остальной Вселенной. Эйнштейн считал, что если частица находится очень далеко от остальной материи, то ее инерция, или инерционная масса, фигурирующая в законах движения Ньютона, становится исчезающе малой. Он попытался построить космологическую модель, в которой инерция исчезает вдали от Галактики. Задача оказалась невероятно сложной. Тогда Эйнштейн решил обойти проблему бесконечно удаленной инертной массы путем полного исключения бесконечности из космологии. Геометрия его Вселенной стала ограниченной, конечной по объему и замкнутой.

Разрабатывая свою теорию, Эйнштейн отказался от идеи, что Галактика — это одинокий остров во Вселенной, и предположил, что материя в среднем распределена равномерно по всему огромному космосу. Он сравнивал себя с геодезистом, который представляет среднюю форму Земли как сферу, пренебрегая всеми деталями холмов и долин. Во Вселенной звезды и их скопления образуют ландшафт, но Эйнштейн решил игнорировать мелкие детали. Он предположил, что звезды (о галактиках тогда еще ничего не было известно) распределены в пространстве однородно и поэтому искривляют пространство везде одинаково, создавая в результате конечное «сферическое» пространство [9] . Предположение, что материя распределена в пространстве равномерно, по крайней мере на больших масштабах, сейчас называют Космологическим принципом.

9

В главе 15 мы уже объясняли, что трехмерная сферическая Вселенная звезд имеет двумерный аналог в виде поверхности сферы, усеянной звездами. Не путайте это с реальной сферой, содержащей звезды внутри себя.

Наряду с конечным объемом, другая важная особенность модели Эйнштейна — ее статичность: звезды в среднем неподвижны друг относительно друга, и геометрия неизменна. В то время астрономические наблюдения не противоречили предположению о статичности. Хотя уже были измерены скорости удаления некоторых туманностей, но дискуссия об их значимости еще только начиналась. Эйнштейн интуитивно предпочитал неизменную Вселенную.

Эйнштейн дорого заплатил за свою неподвижную Вселенную. Как до него фон Зелигер вынужден был модифицировать теорию гравитации Ньютона, чтобы сделать возможной бесконечную статическую Вселенную, так же и Эйнштейн был вынужден добавить так называемый лямбда-член (или космологическую постоянную) в свои уравнения. Физическое явление, которое описывается этой величиной, можно рассматривать как всемирное отталкивание, которое незаметно на малых расстояниях, масштаба Солнечной системы, но становится значимым в масштабах Вселенной.

Эйнштейн не был удовлетворен таким обобщением своей теории и позже называл лямбда-член «самой большой ошибкой в своей жизни». Действительно, без этой постоянной он мог бы предсказать расширение Вселенной еще до того, как это явление открыл Хаббл. Более того, эта модель не обеспечивала сохранение стационарности Вселенной. Артур Эддингтон позже показал, что в модели Эйнштейна Вселенная неустойчива

и должна начать катастрофически сжиматься или расширяться. Как Ньютон, так и Эйнштейн вынуждены были признать, что не так-то просто создать вселенную, которая будет оставаться неподвижной. В наши дни идея космического отталкивания вновь стала частью нашей космологической картины мира, но мы обсудим это ниже.

Фридмановские модели мира.

Модели Вселенной, используемые в настоящее время, разработал российский ученый Александр Александрович Фридман (1888–1925). Он был профессором математики Санкт-Петербургского университета и специалистом по только что созданной в те дни общей теории относительности. Свое исследование под названием «О кривизне пространства» он опубликовал в 1922 году в ведущем научном журнале Zeitschrift fiir Physik. Через два года появилась его вторая статья на ту же тему «О возможности Вселенной с постоянной отрицательной кривизной пространства». Эти работы стали поворотной точкой в космологии, но на них почти никто не обратил внимания. Через год после публикации своей второй статьи Фридман заболел и умер. В 1927 году Жорж Леметр переоткрыл такие модели мира, которые теперь известны как вселенные Фридмана (рис. 23.4).

Фридман показал, что уравнения Эйнштейна имеют нестационарные решения, которые могут описывать реальный мир. Как и Эйнштейн, он предполагал, что материя равномерно распределена по пространству, но не требовал, чтобы плотность материи оставалась постоянной. Следовательно, даже если кривизна пространства-времени всюду одинакова в данное универсальное время, со временем она меняется: Вселенная либо сжимается, либо расширяется. Одна из моделей Фридмана имеет собственное название — вселенная Эйнштейна — де Ситтера в честь Эйнштейна и голландского астронома Виллема де Ситтера, который обсуждал эту модель в своей публикации 1932 года. Плотность материи в этой модели такова, что пространство такой вселенной всегда остается плоским (евклидовым).

Рис. 23.4. (а) Александр Фридман и (б) Жорж Леметр разработали в 1920-х годах теорию расширяющейся Вселенной.

Эта «подходящая» плотность во вселенной Эйнштейна — де Ситтера называется критической плотностью. Если материя равномерно распределена по пространству, то при критической плотности куб со стороной в миллион километров должен содержать всего лишь 9 кг вещества. Реальная плотность вещества всех массивных небесных тел, вероятно, равна одной трети критической плотности, и это дает хорошее представление о пустоте Вселенной. Если бы этот куб со стороной в миллион километров был заполнен воздухом, которым мы дышим, он весил бы 10 27кг!

Галерея возможных миров.

Существует четыре основных типа вселенных Фридмана. У первых трех типов космологический лямбда-член равен нулю, поэтому в них нет всемирного отталкивания. Это следующие типы: вселенные со сферической геометрией, с гиперболической геометрией и между ними — плоская вселенная Эйнштейна-де Ситтера. Кроме того, четвертую обширную группу образуют вселенные, у которых лямбда-член не равен нулю. При чтении дальнейшего описания рекомендуем читателю обращаться к рис. 23.6 и табл. 23.1, где все это суммировано.

При нулевой лямбде, если средняя плотность вселенной больше критической, ее геометрия сферическая, или замкнутая. А если количество вещества меньше критического уровня, то пространство гиперболическое. Фактически, общая теория относительности говорит нам, что статическое пространство, в котором галактики неподвижны друг относительно друга, невозможно в принципе. Вся система галактик находится либо в состоянии сжатия, когда галактики приближаются друг к другу, либо же в состоянии расширения, когда они удаляются друг от друга (рис. 23.5). Это похоже на ситуацию с камнем, брошенным вверх: он либо летит вверх, либо падает вниз, но не может остановиться и плавать на постоянной высоте.

Поделиться:
Популярные книги

Вамп

Парсиев Дмитрий
3. История одного эволюционера
Фантастика:
рпг
городское фэнтези
постапокалипсис
5.00
рейтинг книги
Вамп

"Фантастика 2025-1". Книги 1-30

Москаленко Юрий
Фантастика 2025. Компиляция
Фантастика:
фэнтези
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Фантастика 2025-1. Книги 1-30

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Бастард Императора. Том 12

Орлов Андрей Юрьевич
12. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 12

Локки 5. Потомок бога

Решетов Евгений Валерьевич
5. Локки
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Локки 5. Потомок бога

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Сердце дракона. Танец с врагом

Серганова Татьяна Юрьевна
2. Танец с врагом
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Сердце дракона. Танец с врагом

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат