Чтение онлайн

на главную - закладки

Жанры

Эйнштейн (Жизнь, Смерть, Бессмертие)
Шрифт:

365

цессы с помощью "масштабов" и "часов", т.е. жестких стержней и периодически повторяющихся движений, а также с помощью "наблюдателей", которыми могут быть приборы, регистрирующие показания часов (число оборотов или число отрезков, пройденных телом после некоторого момента) и число уложенных между двумя точками твердых стержней. Устранить подобное понимание термина "поведение масштабов и часов" очень легко. Что действительно трудно (и что не сделано и не могло быть сделано Эйнштейном), - это указать микроскопические процессы, объясняющие соотношения между пространственными и временными измерениями ("поведение масштабов и часов") в движущихся одна относительно другой системах. Мы не

можем и сейчас однозначным и достоверным образом показать, как микроскопическая структура вещества (быть может, атомистическая структура пространства-времени) приводит к соотношениям теории относительности Эйнштейна. Этим соотношениям подчинены все процессы в мире галактик, планет, молекул и атомов. Подчинено ли им поведение элементарных частиц в сколь угодно малых пространственно-временных областях? Мы этого пока не знаем. Если подчинено, то объяснение поведения масштабов и часов их атомистической структурой недостижимо: мы не можем отсылать "от Понтия к Пилату" и, объясняя природу соотношений теории относительности, апеллировать к процессам, подчиненным этим же соотношениям.

Однако можно предположить, что в очень малых, ультрамикроскопических областях имеют место соотношения, из которых вытекают соотношения теории относительности при переходе к большим областям пространства, к большим интервалам времени.

Переход к принципиально иным соотношениям и понятиям встретился нам при знакомстве с термодинамическими работами Эйнштейна и с классической термодинамикой XIX в. Это был переход от микроскопических движений отдельных молекул к состояниям макроскопических тел. Теперь мы имеем подчиненные соотношениям Эйнштейна движения. Быть может, задача состоит в том, чтобы перейти к этим движениям от ультра микроскопических состояний. Такая точка зрения в известной мере восходит к идеям Эйнштейна. Вспомним, что из теории относительности выросла новая, релятивистская теория

366

электрона, предполагающая превращение электронно-позитронных пар в фотоны и порождение электронно-позитронных пар из фотонов. Вспомним также то, что было сказано в связи с изложением квантовой механики и позиции Эйнштейна: за тридцать лет, прошедших после указанных открытий, трансмутации элементарных частиц, превращения частиц одного типа в частицы другого типа, объяснили множество фактов. За это время появилось и развилось представление об излучении частицей частиц иного типа и их последующем поглощении.

Мы знаем, что частица, которая макроскопически обладает непрерывным бытием, на самом деле (в ультрамикроскопическом аспекте) превращается в иные частицы и вновь возникает из них.

Поэтому кажется естественным предположение о трансмутациях как об основе прерывности, дискретности атомистической структуры пространства-времени. Частица определенного типа переходит из одной элементарной, далее неделимой пространственной клетки в соседнюю в течение элементарного интервала, превращаясь в частицу иного типа и вновь возникая уже в другой клетке.

Такое предположение о неотделимости элементарных трансмутаций от элементарных переходов дает наглядное представление о дискретности пространства-времени. Если частица исчезает в данной клетке и возрождается в соседней, никакой сигнал не может быть отправлен на расстояние, меньшее элементарного, и в течение времени, меньшего элементарного. Два события пребывание частицы в точке х в момент времени t и пребывание частицы в точке х в момент времени t' - не могут быть разделены расстоянием, меньшим элементарного расстояния, и временем, меньшим элементарного интервала.

Предположение о дискретности пространства-времени кажется естественным хотя бы потому, что оно высказывалось на каждом этапе развития науки. Уже Эпикур - об этом речь пойдет в главе "Эйнштейн и Аристотель" - говорил о "кинемах", о микроскопических перемещениях атомов в течение "мгновений, постижимых лишь мыслью", с одной и той же скоростью. Тела, состоящие

из атомов, могут двигаться с меньшей скоростью; они даже могут быть неподвижными, если число "кинем", направленных в одну сторону, примерно равно числу "кинем", направленных в обратную сторону.

367

Мир современных аналогов эпикуровских "кинем", мир элементарных трансмутаций-смещений может служить иллюстрацией, - разумеется, совершенно условной - тех закономерностей, которые Эйнштейн искал за кулисами закономерностей квантовой механики. Движение тождественной себе частицы подчинено соотношениям квантовой механики Рассматривая результат большего числа элементарных трансмутаций-переходов, игнорируя отдельные переходы, принимая во внимание макроскопическое движение частицы, мы не можем выйти за пределы этих соотношений: зная положение частицы в данный момент, мы можем узнать лишь вероятность ее скорости. Частица движется в определенную сторону, ее макроскопическая траектория имеет определенное направление, если вероятность элементарных сдвигов в эту сторону больше, чем вероятность элементарных сдвигов в другую сторону, В атом случае частица после большого числа переходов окажется прошедшей свой макроскопический путь, на котором определенное положение несовместимо с определенной скоростью. Здесь все подчинено статистическим закономерностям квантовой механики. Но это еще ничего не говорит о закономерностях, стоящих за кулисами квантовой механики.

Речь идет отнюдь не о каких-то "скрытых параметрах", не о каких-то неизвестных процессах, позволяющих точно определить в одном эксперименте положение и скорость движущейся частицы, найти закономерности движения этой частицы, определяющие достоверным образом не вероятность ее пребывания в данной точке, а самое пребывание. Подобных "скрытых параметров" нет, движение частицы (частицы, тождественной все время самой себе, частицы, движущейся, не исчезая и не возникая) определяется статистическими законами квантовой механики. Но такое движение представляет собой, быть может, только статистический результат большого числа элементарных процессов, к которым неприменимо понятие определенных или неопределенных динамических переменных.

Подобные схемы не претендуют на что-либо большее, чем роль условных иллюстраций, показывающих одно обстоятельство, важное для понимания и исторической оценки "бесплодных" идей Эйнштейна. Эти идеи отнюдь не тянули физику вспять, от квантово-статистической причинности к классической причинности. Приведенная

368

схема иллюстрирует принципиальную возможность такого развития теории микромира, которое отводит эту теорию еще дальше от классических представлений, чем квантовая механика, к идеям, еще более парадоксальным и "безумным" с точки зрения классической физики. Все дело в том, что процесс познания, каким он представлялся Эйнштейну, не встречает абсолютных границ в виде окончательно завершенных теорий и не возвращается назад. Процесс познания повторяет иногда уже пройденные циклы, но всегда на новой основе.

Уже в начале сороковых годов Эйнштейн подходил очень близко к идеям, созревающим сейчас, в семидесятые годы, в релятивистской квантовой физике в связи с изучением свойств элементарных частиц и различных взаимодействий полей. В начале этой главы приводились строки из письма Эйнштейна Гансу Мюзаму в 1944 г.
– в них говорится о "безжалостных тисках математических мучений".

Перед этими строками изложен общий замысел единой теории:

"Целью служит релятивистская характеристика физического пространства, но без дифференциальных уравнений. Последние не приводят к разумному пониманию квантов и вещества. Это в известном смысле отказ от принципа близкодействия, в котором мы со времен Герца были столь твердо уверены. У меня нет сомнений, что это возможно. В принципе это возможно без использования статистического метода, который я всегда считал гнилым выходом..." [12]

Поделиться:
Популярные книги

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Камень Книга одиннадцатая

Минин Станислав
11. Камень
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Камень Книга одиннадцатая

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Сумеречный Стрелок 10

Карелин Сергей Витальевич
10. Сумеречный стрелок
Фантастика:
рпг
аниме
фэнтези
5.00
рейтинг книги
Сумеречный Стрелок 10