Феномен науки. Кибернетический подход к эволюции
Шрифт:
10.6. Достоверность утверждений математики
Теперь о достоверности математических утверждений. Платон выводил ее из идеальности предмета математики, из того факта, что математика не опирается на призрачные и переменчивые данные чувственного опыта. Чертежи и символы, по Платону, являются лишь вспомогательным средством для математики, настоящие объекты, с которыми он оперирует, содержатся в его воображении и представляют собой результат восприятия разумом мира идей подобно тому, как чувственный опыт есть результат восприятия органами чувств материального мира. Нельзя не согласиться с тем, что воображение играет в работе математика решающую роль (как, впрочем, и во всех областях творческой деятельности). Правда, говорить, что математические объекты содержатся в воображении не совсем правильно: в основном они все-таки содержатся в чертежах и текстах, а воображение выхватывает их лишь небольшими
Рис. 10.3. Построение равностороннего треугольника
Надо сказать, что греческие математики, создав изумительное по красоте здание логически строгих доказательств, все же оставили в нем ряд дырок, причем дырки эти лежат, как мы уже отмечали, в самых нижних этажах здания — в области определений и элементарнейших свойств геометрических фигур. А это и свидетельствует о завуалированном обращении к столь презираемому платониками чувственному опыту. Математика времен Платона дает даже более яркий материал, чем современная математика, для опровержения тезиса о её независимости от опыта.
Первое доказываемое предложение первой книги Евклида содержит способ построения равностороннего треугольника по заданной его стороне. Способ таков (рис. 10.3). Пусть AB — заданная сторона треугольника. Из точки A, взятой в качестве центра, опишем окружность?A радиуса AB. Такую же окружность (?B) опишем из точки B. Обозначим через C любую из точек пересечения этих окружностей. Треугольник ABC равносторонний, ибо AC = CВ = AB.
В этом рассуждении есть логическая дырка: откуда следует, что построенные нами окружности вообще пересекутся? Вопрос этот чрезвычайно каверзный, ибо факт наличия точки пересечения C нельзя отнести ни к свойствам окружности, ни даже к свойствам пары окружностей (ибо они отнюдь не всегда пересекаются); мы имеем здесь дело с более специфическим свойством данной ситуации. Вероятно, Евклид чувствовал наличие здесь дырки, но не нашел, чем ее заткнуть.
Откуда же у нас уверенность, что окружности ?A и ?B пересекаются? В конечном счете, разумеется, из опыта. Из опыта созерцания и рисования прямых, окружностей и линий вообще. Из безуспешных попыток провести окружности ?A и ?B таким образом, чтобы они не пересекались.
Итак, мнение Платона о полной независимости, современной ему математики от опыта нельзя признать обоснованным. Однако вопрос о природе математической достоверности требует дальнейшего исследования, ибо просто сослаться на опыт и приравнять тем самым математическую достоверность эмпирической достоверности значило бы броситься в крайность, противоположную платонизму. Ведь мы ясно ощущаем, что математическая достоверность чем-то отличается от эмпирической. Чем же?
Утверждение, что окружности радиуса AB с центрами в A и B пересекаются (мы будем для краткости обозначать это утверждение через E1), представляется нам если не совсем, то почти абсолютно достоверным, мы просто не можем себе представить, чтобы они не пересеклись. Не можем себе представить... Этим-то и отличается математическая достоверность от эмпирической! Когда мы говорим о завтрашнем восходе солнца, мы можем представить, что солнце не взойдет. И только на основании опыта мы полагаем, что оно, вероятно, взойдет. Здесь есть две возможности, и предсказание, какая из них осуществится, имеет вероятностный
10.7. В поисках аксиом
Для понимания природы математической достоверности очень поучительно довести до конца разбор утверждения E1. Поскольку у нас все-таки остались некоторые сомнения относительно абсолютной необходимости пересечения окружности на рис. 10.3, попробуем представить себе ситуацию, когда они не пересекаются. Полная неудача этой попытки будет означать, что утверждение E1 математически достоверно и не может быть разложено на более простые утверждения; тогда его следует принять в качестве аксиомы. Если же нам ценой большего или меньшего насилия над воображением удастся представить себе ситуацию, в которой ?A и ?B не пересекаются, эта ситуация, надо полагать, придет в противоречие с какими-то более простыми и глубокими утверждениями, обладающими математической достоверностью; тогда мы их и примем за аксиомы, а наличие противоречия будет служить доказательством E1. Таков обычный путь к установлению аксиом в математике.
Рис. 10.4. «Перескакивающие» окружности
10.8. Об аксиомах арифметики и логики
Первичные положения арифметики принципиально имеют ту же природу, что и первичные положения геометрии, но они, пожалуй, еще проще и очевидней, их отрицание еще более невообразимо, чем отрицание геометрических аксиом. Возьмем, например, аксиому, гласящую, что для любого числа a
a + 0 = a.
Число 0 изображает пустое множество. Можете ли вы представить себе, что от слияния некоторого множества с пустым множеством число элементов в нем изменится? Или вот еще одна арифметическая аксиома: для любых чисел a и b
a + (b + 1) = (a + b) + 1,
т. е. если единицу прибавить к числу b и результат сложить с а, то получим такое же число, как если бы мы сначала сложили a и b, а затем к результату прибавили единицу. Если проанализировать, почему мы не можем вообразить ситуацию, противоречащую этому утверждению, то мы увидим, что дело в тех же соображениях непрерывности, которые проявляются и в геометрических аксиомах. В процессе счета мы как бы проводим непрерывные линии, соединяющие считаемые предметы с элементами стандартного множества и, конечно, линии во времени (вспомним происхождение понятия «предмет»), непрерывность которых обеспечивает тождественность числа самому себе.
Естественный звуковой язык при перенесении его на бумагу порождает линейный язык, т. е. такую систему, все подсистемы которой суть линейные последовательности знаков. Знаки — это предметы, относительно которых предполагается только то, что мы умеем отличать одинаковые (тождественные) знаки от различных. Линейность естественных языков является результатом того, что звуковой язык развертывается во времени, а отношение следования во времени легко моделируется отношением порядка расположения на пространственной прямой. Специализация естественного языка привела к созданию математического линейного знакового языка, который в настоящее время образует основу математики.
Действуя в рамках линейных знаковых языков, мы постоянно пользуемся некоторыми их свойствами, которые представляются нам столь очевидными и само собой разумеющимися, что мы даже не даем себе труда сформулировать их в виде аксиом. Возьмем для примера такое утверждение: если к символу (знаку) B приписать слева символ A, а справа — символ C, то получится такое слово (последовательность знаков), как если к A приписать справа В, а затем C. Это и ему подобные утверждения обладают математической достоверностью, ибо мы не можем себе представить, чтобы было иначе. Один из разделов современной математики — теория полугрупп — изучает свойства линейных знаковых систем с аксиоматической точки зрения и простейшие из их свойств объявляет аксиомами.