Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

[Это в точности уравнение (40.2), из которого мы и вывели ехр(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

§ 6. Теплопроводность

Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху вниз. (Мы предполагаем, что теплее верх­няя часть ящика, потому что в противном случае возникнут поднимающиеся вверх конвекционные токи, а этот случай уже не имеет отношения к теплопроводности.) Перенос

тепла от горячего газа к холодному вызывается диффузией «горячих» молекул (т. е. молекул с большой энергией) вниз и диффузией «холодных» молекул вверх. Чтобы вычислить поток тепловой энергии, мы должны узнать сначала об энергии, переносимой через выделенную площадку сверху вниз (ее переносят дви­жущиеся вниз молекулы), потом об энергии, переносимой через эту же площадку снизу вверх (за это уже отвечают моле­кулы, поднимающиеся вверх). Разность этих потоков энергии даст нам полный поток энергии сверху вниз.

Теплопроводность c определяется как отношение скорости переноса тепловой энергии через единичную площадку к гра­диенту температуры:

Поскольку ход вычислений теплопроводности очень похож на вычисление потока заряженных частиц в ионизованном газе, то мы предлагаем читателю в виде упражнения доказать, что

при этом (g-1)kT —средняя энергия молекулы при темпера­туре Т.

Если вспомнить о соотношении nlsc=1, то теплопроводность можно записать в виде

Мы получили поистине удивительный результат. Известно, что средняя скорость молекул газа зависит от температуры и не зависит от плотности. Можно думать, что sсзависит только от размеров молекул. Таким образом, наш очень простой вывод сводится к тому, что теплопроводность c (а следовательно, и скорость потока тепла в каждом частном случае) не зависит от плотности газа! Изменение числа «носителей» энергии при изменениях плотности в точности компенсируется изменением расстояния, которое пробегает «носитель» между столкнове­ниями.

А теперь можно спросить: Действительно ли поток тепла всегда не зависит от плотности газа? Ну а если плотность стремится к нулю и в ящике совсем не остается газа? Конечно, нет! Формула (43.43), как и другие формулы этой главы, вы­ведена в предположении, что средняя длина свободного пробега между столкновениями гораздо меньше любых размеров ящика. Если плотность газа столь мала, что молекула имеет неплохие шансы пробежаться от одной стенки ящика к другой, ни разу не столкнувшись, то все вычисления этой главы рухнут. В этих случаях следует вернуться к кинетической теории и заново все детально рассчитать.

 

 

Глава 44

ЗАКОНЫ ТЕРМОДИНАМИКИ

§ 1. Тепловые машины; первый закон

§ 2. Второй закон

§ 3. Обратимые машины

§ 4. Коэффициент полезного действия идеальной машины

§ 5. Термодинами­ческая температура

§ 6. Энтропия

§ 1. Тепловые машины; первый закон

До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся тем или иным законам. Однако вещество обладает и такими свойствами,

которые можно понять, не изучая подробно его строения. Поисками со­отношений между различными свойствами ве­щества, не углубляясь в изучение внутреннего его строения, занимается термодинамика. Ис­торически термодинамика стала наукой еще до того, как более или менее точно узнали о внутреннем строении вещества.

Приведем пример: согласно кинетической теории, давление газа вызывается молекуляр­ной бомбардировкой, и нам известно, что при нагревании газа бомбардировка усиливается и давление должно повыситься. И наоборот, если внутрь ящика с газом вдвигается поршень, преодолевающий сопротивление бомбардирую­щих его молекул, то энергия этих молекул возрастает, а соответственно повышается и температура. Итак, повышая температуру внут­ри заданного объема, мы увеличиваем давление. Если же мы сжимаем газ, то повышается его температура. Используя кинетическую теорию, можно найти количественные соотношения между этими двумя эффектами, однако каж­дому понятно, что между давлением и темпе­ратурой обязательно должна существовать не­которая связь, не зависящая от деталей столк­новений.

Рассмотрим еще один пример. Многим, наверное, известно интересное свойство ре­зины — если растянуть ее, она нагреется. Если вы зажмете губами резиновую полоску и, потянув рукой, рас­тянете ее, то отчетливо почувствуете, что она нагрелась. Это нагревание обратимо, т. е. если вы, продолжая держать полоску губами, быстро отпустите ее, то возникнет столь же отчетливое ощущение холода. Это означает, что при растяжении резина нагревается, а при ослаблении натяжения она охлаждается. Наш инстинкт может нам подсказать, что нагретая резина тянет лучше: если растяжение нагревает резину, то нагрева­ние заставит ее сжаться. Действительно, если поднести к растягиваемой грузиком резиновой полоске газовую горелку, то мы заметим, что полоска резко сократится (фиг. 44.1).

Фиг. 44. 1. Нагретая резина.

Таким образом, при нагревании натяжение в резине возра­стет, и это вполне согласуется с тем, что при уменьшении натяжения она остывает.

Скрытые в резине механизмы, управляющие этими эффек­тами, очень сложны. Мы опишем их с молекулярной точки зре­ния, хотя главная задача этой главы — научиться понимать связь между такими эффектами независимо от молекулярной модели. Тем не менее, именно исходя из молекулярной модели, мы можем показать, что оба эти явления тесно связаны. По­ведение резины можно объяснить так. Представьте себе, что резина, по существу, огромный клубок, состоящий из очень длинных молекул, что-то вроде «молекулярных макарон», но с небольшим дополнительным усложнением: между этими молекулярными цепочками имеются соединительные цепочки. Таким образом, моделью куска резины могут служить слип­шиеся во время варки макароны, образующие огромный ком. Когда мы растягиваем такой клубок, некоторые молекулярные цепи стремятся вытянуться в линию вдоль направления рас­тяжения. В то же время все цепи участвуют в тепловом дви­жении и непрерывно сталкиваются друг с другом. Поэтому такая цепь, когда ее растягивают, не остается в натянутом виде, так как об нее ударяют со всех сторон другие цепи и другие молекулы, и она будет вынуждена запутаться снова. Поэтому истинная причина того, почему резина все время стремится сократиться, заключается в следующем: при растяжении цепи действительно вытягиваются вдоль одной линии, но тепловые движения цепей стремятся запутать их снова и сократить их длину. Поэтому если растянуть цепи и увеличить температуру, то усилится и бомбардировка цепей, что приведет к увеличе­нию натяжения. Этим объясняется способность нагретой ре­зины поднять более тяжелый груз. Если растянутую в течение некоторого времени резину отпустить, то каждая цепь стано­вится мягче, ударяющиеся о расслабленные цепи молекулы теряют энергию, и температура падает.

Итак, мы видели, как кинетическая теория устанавливает связь между сокращением при нагревании и остыванием при расслаблении, но было бы чересчур сложно пытаться вывести методами кинетической теории точные соотношения между этими эффектами. Нам пришлось бы для этого выяснить, сколько столкновений происходит ежесекундно и как выглядят молекулярные цепи. И вообще всех трудностей просто не перечислить. Детали механизма столь сложны, что кинетическая теория не в состоянии описать в точности все происходящее. Однако можно вывести некоторые соотношения между этими эф­фектами, практически ничего не зная о внутреннем механизме!

Поделиться:
Популярные книги

Менталист. Конфронтация

Еслер Андрей
2. Выиграть у времени
Фантастика:
боевая фантастика
6.90
рейтинг книги
Менталист. Конфронтация

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Адвокат вольного города 2

Парсиев Дмитрий
2. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 2

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Четвертый год

Каменистый Артем
3. Пограничная река
Фантастика:
фэнтези
9.22
рейтинг книги
Четвертый год

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Повелитель механического легиона. Том IV

Лисицин Евгений
4. Повелитель механического легиона
Фантастика:
фэнтези
технофэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том IV

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Целительница моей души

Чекменёва Оксана
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Целительница моей души

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия