Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 5. Электричество и магнетизм
Шрифт:

Магнитостатика

Обратите внимание на интересное свойство этой системы четырех уравнений. Она распалась на две части. Электрическое поле Е появляется только в первой паре уравнений, а магнит­ное поле В — только во второй. Между собой эти два поля совсем не связаны. Это означает, что коль скоро заряды и токи постоян­ны, то электричество и магнетизм явления разные. Нельзя обнаружить никакой зависимости

полей Е и В друг от друга, пока не возникают изменения в зарядах или токах, скажем, пока конденсатор не начнет заряжаться или магнит двигаться. Только когда возникают сравнительно быстрые изменения, так что временные производные в уравнениях Максвелла достигают заметной величины, Е и В начинают влиять друг на друга.

Если вы всмотритесь в уравнения статики, то обнаружите, что для изучения математических свойств векторных полей эти два предмета — электростатика и магнитостатика — являются идеальным объектом. Электростатика — это чистый пример век­торного поля с нулевым ротором и заданной дивергенцией, а магнитостатика — чистейший пример поля с нулевой диверген­цией и заданным ротором. Более общепринятый (и, быть может, с чьей-то точки зрения более удовлетворительный) путь изло­жения теории электромагнетизма состоит в том, чтобы начать с электростатики и выучить тем самым все про дивергенцию. Магнитостатику и ротор оставляют на потом. И лишь в кон­це объединяют и электричество, и магнетизм. Мы же с вами начали с полной теории векторного исчисления. Применим те­перь ее к частному случаю электростатики, к полю Е, задавае­мому первой парой уравнений.

Начнем с самых простых задач, в которых положения всех зарядов фиксированы. Если бы нам нужно было изучить элект­ростатику только на этом уровне (а этим мы и будем заниматься в ближайших двух главах), то жизнь наша была бы очень проста. Все было бы почти тривиальным и нам понадобился бы, как вы в этом сейчас убедитесь, только закон Кулона да несколько интегрирований. Однако во многих реальных электростатиче­ских задачах мы вначале не знаем, где находятся заряды. Мы знаем только, что они в зависимости от свойств вещества распре­делились как-то и где-то. Положение, которое примут заряды, зависит от поля Е, а оно в свою очередь зависит от расположе­ния зарядов. И тогда все сразу усложняется. Если, например, заряженное тело поднесено к проводнику или к изолятору, то электроны и протоны в проводнике или изоляторе начнут пере­текать на новое место. Одна часть плотности заряда r в уравнении (4.5) будет нам известна — это тот заряд, который мы подносим; но в r войдут и другие части от тех зарядов, которые перетекают. Мы обязаны будем учесть движение всех зарядов. Возникнут довольно тонкие и интересные задачи.

Однако настоящая глава, хоть она и посвящена электро­статике, не будет касаться самых красивых и тонких вопросов этой науки. В ней будут рассмотрены лишь такие ситуации, в которых можно предположить, что расположение всех зарядов известно. Но и в этом случае, прежде чем научиться справляться со сложными случаями, естественно сначала освоиться с про­стыми.

§ 2. Закон Кулона; наложение сил

Логично было бы принять за отправную точку уравнения (4.5) и (4.6). Но легче начать с другого, а потом вернуться к этим уравнениям. Результат получится одинаковый. Мы начнем с закона, о котором говорилось раньше,— с закона Кулона, утверждающего, что между двумя покоящимися зарядами дей­ствует сила, прямо пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния между ними. Сила направлена по прямой от одного заряда к другому.

Закон Кулона

(4.9)

здесь F1 — сила, действующая на заряд q1; е12 — единичный вектор, направленный от q2к q1 , а г12— расстояние между q1 и q2. Сила F2, действующая на q2, равна и противоположна силе F1. Множитель пропорциональности по историческим причи­нам пишется в виде 1/4яе0. В системе единиц СИ, которой мы пользуемся, он определяется как 10– 7

от квадрата скорости света. Так как скорость света примерно 3·108 м/сек, то множи­тель приблизительно равен 9·109, и единица оказывается рав­ной ньютон·м2/кулон2, или вольт ·м/кулон

(4.10)

Если зарядов больше двух (а именно такие случаи наи­более интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со сто­роны всех прочих зарядов. Этот экспериментальный факт на­зывается «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если доба­вить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).

Применяя закон Кулона, удобно ввести понятие об электри­ческом поле. Мы говорим, что поле Е(1) — это сила, действую­щая со стороны прочих зарядов на единицу заряда q1 . Деля (4.9) на q1 ,мы получаем для действия всех зарядов, кроме q1,

(4.11)

Кроме того, мы считаем, что Е(1) описывает нечто, существую­щее в точке (1), даже если в ней нет заряда q1(в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).

Электрическое поле Е — это вектор, так что в (4.11) на са­мом деле написаны три уравнения, по одному для каждой ком­поненты. Расписывая x-компоненту в явном виде, получаем

(4.12)

и точно так же для остальных компонент.

Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть qjвеличина j-го заряда, а г1j— смещение qjот точки (1); тогда мы напишем

(4.13)

Фиг. 4.1. В точке (1) электрическое поле Е от некоторо­го распределения зарядов полу­чается из интеграла по рас­пределению.

Точка (I) может находится также внутри распределения.

что означает, конечно,

и т. д.

Часто бывает удобно игнорировать тот факт, что заряды всегда существуют в виде отдельных кусочков, таких, как элект­роны или протоны, а считать, что они размазаны сплошным пятном, или, как говорят, описываются «распределением». До тех пор пока нам все равно, что происходит в малых масшта­бах, такое описание вполне законно. Распределение заряда описывается «плотностью заряда» r (х, у, z). Если количество заряда в небольшом объеме DV2 близ точки (2) есть Dq2, то r определяется равенством

Поделиться:
Популярные книги

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Наследие Маозари 3

Панежин Евгений
3. Наследие Маозари
Фантастика:
рпг
аниме
5.00
рейтинг книги
Наследие Маозари 3

Хроники странного королевства. Шаг из-за черты. Дилогия

Панкеева Оксана Петровна
73. В одном томе
Фантастика:
фэнтези
9.15
рейтинг книги
Хроники странного королевства. Шаг из-за черты. Дилогия

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Сборник "Войти в бездну"

Мартьянов Андрей Леонидович
Фантастика:
боевая фантастика
7.07
рейтинг книги
Сборник Войти в бездну

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!