Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 5. Электричество и магнетизм
Шрифт:

§ 3. Характеристики векторных полей

Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем слу­чае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает.

Фиг. 1.3. Поток векторного поля через поверхность, определяе­мый как произведение среднего зна­чения перпендикулярной состав­ляющей

вектора на площадь этой поверхности.

Общее количество жидкости, выте­кающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммар­ный поток равен среднему зна­чению нормальной компоненты скорости (отсчитываемой нару­жу), умноженному на площадь поверхности:

Поток = (Средняя нормальная ком­понента)·(Площадь поверхности).

(1.4)

В случае электрического поля можно математически определить понятие, сходное с истоком жидкости; мы тоже

Фиг. 1.4. Поле скоростей в жид­кости (а).

Представьте себе трубку постоянного се­чения, уложенную вдоль произвольной замкнутой кривой (б). Если жидкость внезапно заморозить повсюду, кроме трубки, то жидкость в трубке начнет циркулировать (в).

Фиг. 1.5. Циркуляция векторного поля, равная произведению

средней касательной составляющей вектора (с учетом ее знака

по отношению к направлению обхода) на длину контура.

называем его потоком, но, конечно, это уже не течение какой-то жидкости, потому что электрическое поле нельзя считать ско­ростью чего-то. Оказывается все же, что математическая вели­чина, определяемая как средняя нормальная компонента поля, по-прежнему имеет полезное значение. Тогда мы говорим о потоке электричества, также определяемом уравнением (1.4). Наконец, полезно говорить и о потоке не только сквозь замкну­тую, но и сквозь любую ограниченную поверхность. Как и прежде, поток сквозь такую поверхность определяется как средняя нормальная компонента вектора, умноженная на пло­щадь поверхности. Эти представления иллюстрируются фиг. 1.3. Другое свойство векторных полей касается не столько по­верхностей, сколько линий. Представим опять поле скоростей, описывающее поток жидкости. Можно задать интересный вопрос: циркулирует ли жидкость? Это значит: существует ли вращательное ее движение вдоль некоторого замкнутого кон­тура (петли)? Вообразите себе, что мы мгновенно заморозили жидкость повсюду, за исключением внутренней части замкну­той в виде петли трубки постоянного сечения (фиг. 1.4). Снаружи трубки жидкость остановится, но внутри она может продолжать двигаться, если в ней (в жидкости) сохранился импульс, т. е. если импульс, который гонит ее в одном направлении, больше импульса в обратном. Мы определяем величину, называемую циркуляцией, как скорость жидкости в трубке, умноженную на длину трубки. Опять-таки мы можем расширить наши пред­ставления и определить «циркуляцию» для любого векторного поля (даже если там нет ничего движущегося). У всякого век­торного поля циркуляция по любому воображаемому замкнутому контуру определяется как средняя касательная компонента вектора (с учетом направления обхода), умноженная на про­тяженность контура (фиг. 1.5):

Циркуляция = (Средняя касательная компонента)·(Длина пути обхода). (1.5)

Вы видите, что это определение действительно дает число, про­порциональное циркуляции скорости в трубке, просверленной в быстрозамороженной жидкости.

Пользуясь только этими двумя понятиями — понятием о потоке и понятием о циркуляции,— мы способны описать все законы электричества и магнетизма. Вам, быть может, трудно будет отчетливо понять значение законов, но они дадут вам некоторое представление о том, каким способом в конечном счете может быть описана физика электромагнитных явлений.

§ 4. Законы электромагнетизма

Первый

закон электромагнетизма описывает поток электри­ческого поля:

где e0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы дока­жем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сфери­чески симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значе­нию Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутрен­нему заряду, значит, поле должно убывать, как квадрат рас­стояния; так получается поле «обратных квадратов».

Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то ока­жется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив вто­рой закон, утверждающий, что

И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:

(1.8)

А для поверхности S, ограниченной кривой С:

Появившаяся в уравнении (1.9) постоянная с2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа eо поставлена для того, чтобы возникли привычные единицы силы электрического тока.

Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики.

Как вы помните, законы Нью­тона написать было очень просто, но из них зато вытекало мно­жество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.

Мы можем проиллюстрировать некоторые законы электро­динамики серией несложных опытов, которые смогут нам пока­зать хотя бы качественно взаимоотношения электрического и магнитного полей. С первым членом в уравнении (1.1) вы зна­комитесь, расчесывая себе волосы, так что о нем мы говорить не будем. Второй член в уравнении (1.1) можно продемонстриро­вать, пропустив ток по проволоке, висящей над магнитным бруском, как показано на фиг. 1.6. При включении тока про­волока сдвигается из-за того, что на нее действует сила F=qvXB. Когда по проводу идет ток, заряды внутри него движутся, т. е. имеют скорость v, и на них действует магнит­ное поле магнита, в результате чего провод отходит в сторону.

Когда провод сдвигается влево, можно ожидать, что сам магнит испытает толчок вправо. (Иначе все это устройство можно было бы водрузить на платформу и получить реактивную систему, в которой импульс не сохранялся бы!) Хотя сила чересчур мала, чтобы можно было заметить движение магнитной палочки, однако движение более чувствительного устройства, скажем стрелки компаса, вполне заметно.

Каким же образом ток в проводе толкает магнит? Ток, теку­щий по проводу, создает вокруг него свое собственное магнит­ное поле, которое и действует на магнит. В соответствии с по­следним членом в уравнении (1.9) ток должен приводить к цир­куляции вектора В; в нашем случае линии поля В замкнуты вокруг провода, как показано на фиг. 1.7. Именно это поле В и ответственно за силу, действующую на магнит.

Поделиться:
Популярные книги

Выбор варианта

Ром Полина
Фантастика:
фэнтези
5.50
рейтинг книги
Выбор варианта

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Сумман твоего сердца

Арниева Юлия
Фантастика:
фэнтези
5.60
рейтинг книги
Сумман твоего сердца

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Душелов. Том 3

Faded Emory
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
5.00
рейтинг книги
Душелов. Том 3

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга