Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 5. Электричество и магнетизм
Шрифт:

(2.9)

где еf единичный вектор направления потока Вектор h можно определить и иначе — через его компонен­ты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Аa2 под некото­рым углом к поверхности Dat, которая перпендикулярна к по­току. Единичный вектор n перпендикулярен к поверхности

Фиг.2.3.Тепловой

поток— векторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент по­верхности, ориентированный попе­рек потока, деленную на площадь элемента поверхности.

Фиг. 2.4. Тепловые потоки сквозь 2 и сквозь Aa1 одинаковы.

2. Угол q между n и h равен углу между поверхностями (так как h — нормаль к Da1). Чему теперь равен поток тепла че­рез Dа2 на единицу площади? Потоки сквозь Dа2 и Dа1 равны между собой, отличаются только площади. Действительно, Dа1 = Dа2cosq. Поток тепла через Dа2 равен

(2.10)

Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h·n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу по­верхности Dа2, равна h·n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.

§ 3. Производные полей — градиент

Когда поля меняются со временем, то их изменение можно описать, задав их производные по t. Мы хотим также описать и их изменение в пространстве, потому что мы интересуемся связью, скажем, между температурой в некоторой точке и в точке с ней рядом. Как же задать производную температуры по координате? Дифференцировать температуру по х? Или по у, или по z?

Осмысленные физические законы не зависят от ориентации системы координат. Поэтому их нужно писать так, чтобы по обе стороны знака равенства стояли скаляры или векторы. Что же такое производная скалярного поля, скажем, дТ/дх? Скаляр ли это, или вектор, или еще что? Это, как легко понять, ни то ни другое, потому что если взять другую ось х, то дТ/дх изменится. Но заметьте: у нас есть три возможных производ­ных: дТ/дх, дТ/ду и dT/dz. Три сорта производных, а ведь мы знаем, что нужно как раз три числа, чтобы образовать вектор.

Может быть, эти три производные и представляют собой ком­поненты вектора:

(2.11)

Ясно, конечно, что, вообще говоря, не из любых трех

чисел можно составить вектор. О векторе можно говорить только тогда, когда при повороте системы координат компоненты пре­образуются по правильному закону. Так что следует просле­дить, как меняются эти производные при повороте системы координат. Мы покажем, что (2.11) — действительно вектор. Производные действительно преобразуются при вращении си­стемы координат так, как полагается.

В этом можно убедиться по-разному. Можно, например, задать себе вопрос, ответ на который не должен зависеть от системы координат, и попытаться выразить ответ в «инвариант­ной» форме. К примеру, если S=A·B и если А и В — векторы, то мы знаем (это доказано в вып. 1, гл. 11), что S — скаляр. Мы знаем, что S — скаляр, не проверяя, меняется ли он при изменении системы координат. Ему ничего иного не остается, раз он является скалярным произведением двух векторов. По­добным же образом, если мы знаем, что А — вектор, и у нас есть три числа B1, B2, В3, и мы обнаруживаем, что

(2.12)

(где S в любой системе координат одно и то же), то три числа b1, B2, В3 обязаны быть компонентами Вх, Ву, Вz некоторого вектора В.

Рассмотрим теперь температурное поле. Возьмем две точки P1 и Р2, разделенные маленьким расстоянием DR. Температура в Р1 есть T1, а в Р2 она равна T2 , и их разница DТ=Т2– Т1 .Температура в этих реальных физических точках, конечно, не зависит от того, какие оси мы выбрали для измерения коорди­нат. В частности, DT — тоже число, не зависящее от системы координат. Это скаляр.

Выбрав удобную систему координат, мы можем написать

Т1 = Т(х, у, z) и Т2=Т(х + Dх, у + Dу, z + Dz),

где Dx:, Dy, Dz — компоненты вектора DR (фиг. 2.5). Вспомнив (2.7), напишем

(2.13)

Слева в (2.13) стоит скаляр, а справа — сумма трех произведе­ний каких-то чисел на Dx;, Dy, Dz, которые являются компонен­тами вектора. Значит,

три числа — тоже х-, у- и z-компоненты вектора.

Фиг. 2.5. Вектор DR с компо­нентами Dх, Dу, Dz.

Мы напишем этот новый вектор при помощи символа СТ. Символ С (называемый набла) — это D вверх ногами; он напоминает нам о дифференцировании. Читают С T по-разному:

«набла T», или «градиент T», или «gradT»:

(2.14)

Поделиться:
Популярные книги

Выбор варианта

Ром Полина
Фантастика:
фэнтези
5.50
рейтинг книги
Выбор варианта

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Сумман твоего сердца

Арниева Юлия
Фантастика:
фэнтези
5.60
рейтинг книги
Сумман твоего сердца

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Душелов. Том 3

Faded Emory
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
5.00
рейтинг книги
Душелов. Том 3

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга