Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Фиг. 41.1. Увлечение жидкости между двумя параллельными пластинками.

Если вы будете измерять силу, требуемую для поддержания движения верхней пластины, то найдете, что она пропорциональна площади пластины и отно­шению v0/d, где d — расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально v0/d:

Коэффициент

пропорциональности h называется коэффициен­том вязкости.

Если перед нами более сложный случай, то мы всегда можем рассмотреть в воде небольшой плоский прямоугольный объем, грани которого параллельны потоку (фиг. 41.2).

Фиг. 41.2. Напряжения сдви­га в вязкой жидкости.

Силы в этом объеме определяются выражением

Далее, дvx/дy представляет скорость изменения деформаций сдвига, определенных нами в гл. 38, так что силы в жидкости пропорциональны скорости изменения деформаций сдвига.

В общем случае мы пишем

При равномерном вра­щении жидкости производ­ная дuх/ду равна дvy/дx с обратным знаком, a Sxyбудет равна нулю, как это и требуется, ибо в равно­мерно вращающейся жидкости напряжения отсутствуют. (Подобную же вещь мы проде­лывали в гл. 39 при определении еxy.) Разумеется, для Syzи Sгхтоже есть соответствующие выражения.

В качестве примера применения этих идей рассмотрим дви­жение жидкости между двумя коаксиальными цилиндрами. Пусть радиус внутреннего цилиндра равен а, его скорость будет vа, а радиус внешнего цилиндра пусть будет b, а скорость равна vb(фиг. 41.3).

Фиг. 41.3. Поток жидкости между двумя концентрическими цилиндрами, вращающимися с разными угловыми скоростями.

Возникает вопрос, каково распределение скоростей между цилиндрами? Чтобы ответить на него, начнем с получения формулы для вязкого сдвига в жидкости на рас­стоянии rот оси. Из симметрии задачи можно предположить, что поток всегда тангенциален и что его величина зависит только от r; v=v(r). Если мы понаблюдаем за соринкой в воде, расположенной на расстоянии rот оси, то ее координаты как функции времени будут

x = rcoswt, у=rsinwt,

где w=v/r. При этом х- и y-компоненты

скорости равны

vx=-rwsinwt =-wу и vy= rwcoswt=wх. (41.4)

Из формулы (41.3) получаем

Для точек с у=0 имеем дw/ду=0, а х(дw/дх) будет равно r(dw)/dr). Так что в этих точках

(Разумно думать, что величина S должна зависеть от дw/дr, когда w не изменяется с r, жидкость находится в состоянии равномерного вращения и напряжения в ней не возникают.) Вычисленное нами напряжение представляет собой танген­циальный сдвиг, одинаковый повсюду вокруг цилиндра. Мы можем получить момент сил, действующий на цилиндриче­ской поверхности радиусом r, путем умножения напряжения сдвига на плечо импульса rи площадь 2prl:

Поскольку движение воды стационарно и угловое уско­рение отсутствует, то полный момент, действующий на ци­линдрическую поверхность воды между радиусами rи r+dr, должен быть нулем; иначе говоря, момент сил на расстоянии r должен уравновешиваться равным ему и противоположно на­правленным моментом сил на расстоянии r+dr, так что t не должно зависеть от r. Другими словами, r3(dw/dr) равно некоторой постоянной, скажем А, и

dw/dr=A/r3 (41.8)

Интегрируя, находим как w изменяется с r:

Постоянные А и В должны определяться из условия, что w=wa в точке r=a, a w=wb в точке r=b. Тогда находим

Таким образом, w как функция r нам известна, а стало быть, известно и v=wr.

Если же нам нужно определить момент сил, то его можно получить из выражений (41.7) и (41.8);

или

Он пропорционален относительной угловой скорости двух цилиндров. Имеется стандартный прибор для измерения коэф­фициентов вязкости, который устроен следующим образом: один из цилиндров (скажем, внешний) посажен на ось, но удер­живается в неподвижном состоянии пружинным динамометром, который измеряет действующий на него момент сил, а внутрен­ний цилиндр вращается с постоянной угловой скоростью. Коэффициент вязкости определяется при этом из формулы (41.11).

Поделиться:
Популярные книги

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Новобрачная

Гарвуд Джулия
1. Невеста
Любовные романы:
исторические любовные романы
9.09
рейтинг книги
Новобрачная

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Газлайтер. Том 19

Володин Григорий Григорьевич
19. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 19

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона