Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:

Допустим затем, что имеется экспериментальное устройство (фиг. 5.9): поляризованные мюоны входят слева и в блоке ве­щества А останавливаются, а чуть позже распадаются.

Фиг.. 5.9.Опыт с распадом мюона.

Испу­скаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут вхо­дить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение

при наличии магнитного поля. Можно ожидать, что оно как-то будет меняться со временем. То, что получится, можно узнать, спросив, ка­кой будет в каждый момент амплитуда того, что мюон обнару­жится в состоянии (+x).

Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по +х; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином 1/2 в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины на­правлены вверх или вниз по полю,— тогда их амплитуды ум­ножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором ба­зисные состояния — это направления спином вверх или спи­ном вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.

Пусть |y(t)> представляет состояние мюона. Когда он вхо­дит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+x). Из предыдущей главы следует, что эти амплитуды равны

Они оказываются одинаковыми. Раз они относятся к положе­нию при t=0, обозначим их С+(0) и С(0).

Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует

Но если нам известны C+(t) и C(t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в мо­мент t)окажется направленным по +х. Но наши общие пра­вила учитывают и эту задачу. Мы пишем, что амплитуда пре­бывания в состоянии (+x) в момент t [обозначим ее A+(t)]есть

или

Опять пользуясь результатом последней главы (или лучше равенством

* из гл. 3), мы пишем

Итак, в (5.37) все известно. Мы получаем

или

Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t=0. Мы

получаем А+(0)=1, и это вполне правильно, потому что сперва и было предположено, что при t=0 мюон был в состоянии (+x).

Вероятность Р+того, что мюон окажется в состоянии (+х) в момент t, есть +)2, т. е.

Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.

Фиг. 5.10. Временная зависимость вepoятности того. что частица со спином 1 / 2 окажется в состоянии (+) по отношению оси х.

Заметьте, что вероятность возвращается к единице при mBt/h=p (а не при 2p). Из-за того что косинус возведен в квадрат, вероятность повторяется с частотой 2mВ/h.

Итак, мы обнаружили, что шанс поймать в электронном счетчике, показанном на фиг. 5.9, распадный электрон перио­дически меняется с величиной интервала времени, в течение которого мюон сидел в магнитном поле. Частота зависит от магнитного момента (Л. Именно таким образом и был на самом деле измерен магнитный момент мюона.

Тем же методом, конечно, можно воспользоваться, чтобы ответить на другие вопросы, касающиеся распада мюона. На­пример, как зависит от времени t шанс заметить распадный электрон в направлении у, под 90° к направлению х, но по-прежнему под прямым углом к полю? Если вы решите эту за­дачу, то увидите, что вероятность оказаться в состоянии (+у) меняется как cos2{(mBt/h)-(p/4)}; она колеблется с тем же периодом, но достигает максимума на четверть цикла позже, когда mВt/h=p/4. На самом-то деле происходит вот что: с те­чением времени мюон проходит через последовательность со­стояний, отвечающих полной поляризации в направлении, ко­торое непрерывно вращается вокруг оси z. Это можно описать, говоря, что спин прецессирует с частотой

Вам должно становиться понятно, в какую форму выли­вается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.

* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

 

 

Глава 6

ГАМИЛЬТОНОВА МАТРИЦА

§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

Поделиться:
Популярные книги

Брак по принуждению

Кроу Лана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Брак по принуждению

Потусторонний. Книга 2

Погуляй Юрий Александрович
2. Господин Артемьев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Потусторонний. Книга 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Господин следователь. Книга 4

Шалашов Евгений Васильевич
4. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 4

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Офицер империи

Земляной Андрей Борисович
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.50
рейтинг книги
Офицер империи

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Хозяйка заброшенного поместья

Шнейдер Наталья
1. Хозяйка
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка заброшенного поместья

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Девушка без репутации

Усова Василиса
1. Месть попаданки
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Девушка без репутации

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!