Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:

§ 2. Разложение векторов состояний

Посмотрим на уравнение (6.8) еще раз; его можно рассмат­ривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокуп­ности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффи­циенты <i|j> — это просто обычные (комплексные) числа, на­пишем

<i|j>=Сi. Тогда (6.8) совпадает с

Такое

же уравнение можно написать и для всякого другого вектора состояния, скажем для |c>, но, конечно, с другими коэффициентами, скажем с Di. Тогда будем иметь

где Diэто просто амплитуды <i|c>.

Представим, что мы начали бы с того, что в (6.1) абстра­гировались бы от j. Тогда мы бы имели

Вспоминая, что <c|i>=<i|c>*, можно записать это в виде

А теперь интересно вот что: чтобы обратно получить <c|j>, можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):

Это ничего не меняет. Объединяя с (6.10), получаем

Вспомните, однако, что <j|i>=dij, так что в сумме останутся только члены с j=i. Выйдет

где, как вы помните, d*i=<i|c>*=<c|i>, а Ci=<i|j>. Опять мы являемся свидетелями тесной аналогии со скалярным произведением

Единственная разница — что Diнужно комплексно сопрягать. Значит, (6.15) утверждает, что если разложить векторы со­стояний <c| и |j> по базисным векторам <i| или |i), то ампли­туда перехода из j в c дается своего рода скалярным произве­дением (6.15). А это просто (6.1), записанное в других символах. Мы ходим по кругу, привыкая к новым символам.

Может быть, стоит подчеркнуть, что в то время, как про­странственные трехмерные векторы выражаются через три ортогональных единичных вектора, базисные векторы |i>

квантовомеханических состояний должны пробегать всю совокуп­ность, отвечающую данной задаче. В зависимости от положения вещей в нее может входить два или три, пять или бесконечно много базисных состояний.

Мы говорили также о том, что происходит, когда частицы проходят через прибор. Если мы выпустим частицы в опре­деленном состоянии j, затем проведем их через прибор, а после проделаем измерение, чтобы посмотреть, находятся ли они в состоянии c, то результат будет описываться амплитудой

Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так:

Это пример двукратного применения основного правила (6.9).

Мы обнаружили также, что если вслед за прибором А по ставить другой прибор 5, то можно написать

Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6,9). Вспомните, что между В и A всегда можно поставить черту (|), которая ведет себя совсем как множитель единица.

Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор А в состоянии j и выходящей из него в состоянии y. Мы можем задать себе такой вопрос: можно ли найти такое состояние y, чтобы амплитуда перехода от yк c тождественно совпадала с амплитудой <c|A|j>?Ответ гласит да. Мы хотим, чтобы (6.17) заменилось уравнением

Конечно, этого можно достичь, если взять

что и определяет собой y. «Но оно не определяет собой y,— скажете вы,— оно определяет только <i|y>». Однако <i|y> все же определяет y; ведь если у вас есть все коэффициенты, связывающие y с базисными состояниями i, то y опреде­ляется однозначно. И действительно, можно поупражняться с нашими обозначениями и записать (6.20) в виде

А раз это уравнение справедливо при всех г, то можно просто писать

Теперь мы вправе сказать: «Состояние y — это то, что полу­чается, если начать с j и пройти сквозь аппарат A».

Еще один, последний пример полезных уловок. Начинаем опять с (6.17). Раз это уравнение соблюдается при любых c и j, то их обоих можно сократить! Получаем

Что это значит? Только то, что получится, если вернуть на свои места j и c. В таком виде это уравнение «недокончено» и неполно. Если умножить его «справа» на |j>, то оно превра­щается в

Поделиться:
Популярные книги

Возвращение

Штиль Жанна
4. Леди из будущего
Любовные романы:
любовно-фантастические романы
8.65
рейтинг книги
Возвращение

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Ваше Сиятельство 11

Моури Эрли
11. Ваше Сиятельство
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Ваше Сиятельство 11

Эволюционер из трущоб. Том 4

Панарин Антон
4. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 4

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Боец с планеты Земля

Тимофеев Владимир
1. Потерявшийся
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Боец с планеты Земля

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3