Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

Cn=<xn|y>. (14.6)

Поскольку базисные состояния связаны с местоположением электрона на линии, то амплитуду Сnможно рассматривать как функцию координаты х и писать ее в виде С(хn). Амплитуды С(хn)будут в общем случае меняться во времени и поэтому суть также функции от t, но мы не будем

отмечать эту зависи­мость явно.

Кроме того, в гл. 11 мы предположили, что амплитуды С(хn) обязаны меняться во времени так, как положено по гамильтонову уравнению (11.3). В нашем новом обозначении это уравне­ние имеет вид

Два последних слагаемых в правой части представляют такой процесс, когда электрон, находившийся возле атома (n+1) или возле атома (n-1), окажется возле атома (n).

Мы нашли, что (14.7) имеет решения, отвечающие состоя­ниям определенной энергии. Мы записывали их в виде

У состояний с низкой энергией длины волн велики (k мало) и энергия связана с k формулой

или, если выбрать нуль энергии так, чтобы было 02А)=0, то энергия дается формулой (14.1).

Посмотрим, что бы произошло, если бы мы позволили рас­стоянию b между атомами решетки стремиться к нулю, сохра­няя волновое число постоянным. Если бы больше ничего не случилось, то последнее слагаемое в (14.9) обратилось бы просто в нуль, и никакой физики бы не осталось. Но предположим, что А и b вместе изменяются так, что при стремлении b к нулю произведение Ab2поддерживается постоянным: с помощью (14.2) мы запишем Аb2в виде постоянной h2/2mэфф. При этом (14.9) не изменится, но что произойдет с дифференциальным уравнением (14.7)?

Перепишем сперва (14.7) так:

При нашем выборе Е0первое слагаемое выпадет. Далее, пред­ставим себе непрерывную функцию С(х), которая плавно про­ходит через значения С(хn)в точках хn. Когда расстояние b стремится к нулю, точки хnсближаются все теснее и теснее и [если С(х)меняется достаточно плавно] величина в скобках попросту пропорциональна второй производной С(х). Можно написать (в чем легко убедиться, разложив в ряд Тэйлора каждый член) равенство

Тогда в пределе, когда b стремится к нулю, а b2A поддерживает­ся равным h2/2mэфф, уравнение (14.7) переходит в

Перед

нами уравнение, утверждающее, что скорость изменения С(х)амплитуды того, что электрон будет обнаружен в х— зависит от амплитуды того, что электрон будет обнаружен в близлежащих точках так, что эта скорость пропорциональна второй производной амплитуды по координате.

Правильное квантовомеханическое уравнение движения электрона в пустом пространстве впервые было открыто Шре­дингером. При движении по прямой оно имеет вид (14.12); надо только mэфф заменить на m — массу электрона в пустом про­странстве. При движении по прямой в пустом пространстве уравнение Шредингера имеет вид

Мы не хотим, чтобы вы считали, будто мы сейчас вывели уравнение Шредингера; мы только показываем вам один из способов, каким его можно осмыслить. Когда Шредингер впер­вые написал его, он привел какой-то вывод, опиравшийся на эвристические доводы и блестящие интуитивные догадки. Не­которые из его доводов были даже неверны, но это не имело значения; важно то, что окончательное уравнение дает правиль­ное описание природы. И цель нашего обсуждения состоит просто в том, чтобы показать вам, что правильное фундаментальное квантовомеханическое уравнение (14.13) имеет ту же самую форму, какая получается в предельном случае электрона, дви­жущегося вдоль цепочки атомов. Это значит, что можно считать, что дифференциальное уравнение (14.13) описывает диффузию амплитуды вероятности от точки к точке вдоль прямой. Иначе говоря, если электрон имеет некоторую амплитуду того, что он будет в одной точке, то чуть позже у него появится амплитуда того, что он будет в близлежащих точках. Уравнение дейст­вительно напоминает уравнения диффузии, которыми мы поль­зовались в начале курса. Но есть и одно важное отличие: мни­мый коэффициент перед производной по времени приводит к по­ведению, в корне отличному от обычной диффузии (например, от диффузии газа, распространяющегося по длинной трубе). Обычная диффузия приводит к действительным экспоненциаль­ным решениям, а решения (14.13) суть комплексные волны.

§ 2. Волновая функция

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проб­лему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратить­ся к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной части­цы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным мно­жеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют неко­торых технических видоизменений.

Начнем с того, что вектором состояния |х>обозначим со­стояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х>в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплиту­ды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность ампли­туд, по одной для каждого х. Запишем их в виде <x|y>. Каж­дая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|y> является в действительности просто функцией х. Запи­шем ее также в виде С (х):

Мы уже рассматривали такие амплитуды, которые непрерыв­ным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импуль­сом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

Поделиться:
Популярные книги

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Оживший камень

Кас Маркус
1. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Оживший камень

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Русь. Строительство империи 2

Гросов Виктор
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи 2

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

Волхв пятого разряда

Дроздов Анатолий Федорович
2. Ледащий
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Волхв пятого разряда

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

ВоенТур 3

АЗК
3. Антиблицкриг
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
ВоенТур 3

Имя нам Легион. Том 10

Дорничев Дмитрий
10. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 10

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V