Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

Наша задача теперь состоит в том, чтобы отыскать функцию f(х, х'), которая после умножения на y (х)и интегрирования по всем х даст как раз величину y (х'). Но оказывается, что не существует математической функции, которая это умеет делать! По крайней мере не существует ничего похожего на то, что мы обычно имеем в виду под словом «функция».

Выберем какое-нибудь значение х', например 0, и опреде­лим амплитуду <0|x> как некую функцию х, скажем f(х). Тогда (14.38) обратится в

Какого же вида функция f(х)могла

бы удовлетворить такому уравнению? Раз интеграл не должен зависеть от того, какие значения принимает y (х)при х, отличных от нуля, то ясно, что f(х)должна быть равна нулю для всех значений х, кроме нуля. Но если f(х)всюду равна нулю, то интеграл будет тоже равен нулю, и уравнение (14.39) не удастся удовлетворить. Возникает невозможная ситуация: нам нужно, чтобы функция была нулем всюду, кроме одной точки, и давала все же конечный интеграл. Что ж, раз мы не в состоянии сыскать функцию, которая так поступает, то простейший выход — просто сказать, что функция f(х) определяется уравнением (14.39). И именно f(х) — такая функция, которая делает (14.39) правильным. Функция, которая умеет это делать, впервые была изобретена Дираком и носит его имя. Мы обозначаем ее d (х). Все, что о ней утверждается — это что функция d(х)обладает странным свойством: если ее подставить вместо f(х)в (14.39), то интеграл выберет то значе­ние, которое y (х)принимает при х=0; и поскольку интеграл не должен зависеть от y (х)при х, отличных от нуля, то функция d(х)должна быть нулем всюду, кроме х=0. Словом, мы пишем

<0|x>=d(x), (14.40)

где d (х)определяется соотношением

Посмотрите, что выйдет, если вместо y в (14.41) поставить частную функцию «1». Тогда получится

Иначе говоря, функция d(х)обладает тем свойством, что всюду, кроме х=0, она равна нулю, но интеграл от нее конечен и равен единице. Приходится вообразить, что функция d(х) обладает в одной точке такой фантастической бесконечностью, что полная площадь оказывается равной единице.

Как представить себе, на что похожа d-функция Дирака? Один из способов — вообразить последовательность прямо­угольников (или другую, какую хотите функцию с пиком), которая становится все уже и уже и все выше и выше, сохраняя все время единичную площадь, как показано на фиг. 14.2.

Фиг. 14.2. Последователь­ность функций, ограничиваю­щих единичную площадь, вид которых все сильнее и сильнее напоминает d-функцию.

Интеграл от этой функции от -Ґ до +Ґ всегда равен единице. Если вы умножите ее на произвольную функцию y(х)и проин­тегрируете произведение, то получите нечто, приближенно сов­падающее со значением функции при х=0, причем приближение становится все лучше и лучше, по мере того как прямоугольники становятся уже и уже. Если хотите, можете представлять d-функцию посредством такого рода предельного процесса. Но единственно здесь важно то, что d-функция определена так, что (14.41) справедливо для каждой волновой функции y (х).

Это однозначно определяет d-функцию. Ее свойства тогда получаются такими, как было сказано.

Заменим аргумент d-функции с х на х- х', и соотношения обратят­ся в d(х-x')=0,

Если в (14.38) вместо амплитуды <x|х'> подставить d(xх'), то это уравнение будет выполнено. В итоге получаем, что для наших базисных состояний с координатой х условие, соответствующее формуле (14.36), имеет вид

<x'|x>=d(xх'). (14.44)

Теперь мы завершили все необходимые видоизменения наших основных уравнений, нужные для работы с континуумом ба­зисных

состояний, соответствующих точкам на прямой. Обобще­ние на три измерения вполне очевидно: во-первых, координата х заменяется вектором r; во-вторых, интегралы по х заменяются на интегралы по х, у и z (иными словами, они становятся интегралами по объему); в-третьих, одномерную d-функцию надо заменить просто произведением трех d-функций от x, от y и от z: d (х-х') d (у- у') d (z-z'). Собирая все вместе, получаем следующую совокупность уравнений для амплитуд частицы в трехмерном мире:

А что бывает, когда частиц не одна, а больше? Мы расскажем вам, как управляться с двумя частицами, и вы сразу поймете, что нужно делать, если вам понадобится оперировать с несколь­кими частицами. Пусть имеются две частицы; назовем их № 1 и № 2. Что применить в качестве базисных состояний? Одну вполне приемлемую совокупность можно задать, сказав, что частица № 1 находится в х1, а частица № 2 — в х2, и записав это в виде

|x1, х2>. Заметьте, что указание координаты только одной ча­стицы не определяет базисного состояния. Каждое базисное состояние обязано определять условия всей системы целиком. Вы не должны думать, что каждая частица движется независимо как трехмерная волна. Всякое физическое состояние |y> можно определить, задав все амплитуды <x1, х2|y> того, что пара частиц будет обнаружена в х1и x2. Эта обобщенная амплитуда поэтому является функцией двух совокупностей координат x1 и x2. Вы видите, что такая функция — это уже не волна в смысле колебания, которое разбегается в трех измерениях. Точно так же это и не простое произведение двух самостоятельных волн, по одной для каждой частицы. Это в общем случае какая-то волна в шести измерениях, определяемых числами х1и x2. Если в при­роде имеются две взаимодействующие частицы, то не существует способа описать то, что происходит с одной из частиц, попытав­шись выписать волновую функцию для нее одной. Известные парадоксы, которые мы рассматривали в первых главах (где объявлялось, что измерения, проделанные над одной частицей, в состоянии предсказать, что будет с другой, или что они могут разрушить интерференцию), причинили людям много неприятностей, потому что они пытались придумывать волновую функцию одной отдельной частицы вместо правильной волновой функции координат обеих частиц. Полное описание можно правильно провести только в терминах функций координат обеих частиц.

§ 5. Уравнение Шредингера

До сих пор мы просто заботились о том, как бы записать состояния, которые бы учитывали, что электрон может находить­ся в пространстве где угодно. Теперь же следует позаботиться о включении в наше описание физики того, что может произойти в тех или иных обстоятельствах. Как и прежде, надо подумать о том, как состояния будут меняться со временем. Если у нас есть состояние |y>, которое несколько позже переходит в дру­гое состояние |y>, то положение в любой момент мы сможем описать, сделав волновую функцию (т. е. попросту амплитуду <r|y>) функцией не только координат, но и времени. Частицу в данных условиях можно будет тогда описывать, задавая меняющуюся во времени волновую функцию y (r, t) =y (х, у, z, t). Эта меняющаяся во времени волновая функция описывает эво­люцию последовательных состояний, которая происходит с тече­нием времени. Это так называемое «координатное представле­ние»; оно дает проекции состояния |y> на базисные состояния |r> и не всегда может считаться самым удобным, но мы с него

и начнем.

В гл. 6 мы описали на языке гамильтониана Нij., как состоя­ния меняются во времени. Мы видели, что временная вариация различных амплитуд дается матричным уравнением

Это уравнение говорит, что изменение во времени каждой из амплитуд Сiпропорционально сумме всех прочих амплитуд Сj

Поделиться:
Популярные книги

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Мастер клинков. Начало пути

Распопов Дмитрий Викторович
1. Мастер клинков
Фантастика:
фэнтези
9.16
рейтинг книги
Мастер клинков. Начало пути

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Рождение победителя

Каменистый Артем
3. Девятый
Фантастика:
фэнтези
альтернативная история
9.07
рейтинг книги
Рождение победителя

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь