Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количество состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами — не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.
Начну с того, что напомню вам кое-какие свойства уравнения Шредингера. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала,
Фиг. 19.1. Амплитуда перехода из а в b по пути r пропорциональна
Амплитуда того, что частица при наличии поля перейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от векторного потенциала, умноженного в свою очередь на электрический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:
Это исходное утверждение квантовой механики.
И вот в отсутствие векторного потенциала уравнение Шредингера для заряженной частицы (нерелятивистской, без спина) имеет вид
где j — электрический потенциал, так что qj — потенциальная энергия. А уравнение (19.1) равнозначно утверждению, что в магнитном поле градиенты в гамильтониане нужно
каждый раз заменять на градиент минус (iq/h)А, так что (19.2) превращается в
Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, j.
Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал Аx(х, t) в x– направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/h)Axb] — экспоненту с показателем, равным произведению iq/h на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать (q/h) Axєf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)єСnамплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением
В нем три части. Во-первых, у электрона, который находится в точке х, есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если Ахна расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения Ахпосредине, умноженного на расстояние. Итак, произведение (iq/h) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от х, на расстоянии b/2, и
Но дальше мы знаем, что если функция С(х)достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) (стр. 80) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто (Е0– 2К)С(х), так что в нулевом приближении энергия равняется Е0– 2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите
(штрихи обозначают дифференцирование по х).
Это ужасное нагромождение разных букв выглядит очень сложно. Но математически оно в точности совпадает с
Вторая скобка, действуя на С(х), даст С'(х)минус if(x)C(x). Первая скобка, действуя на эти два члена, даст член с С", члены с первыми производными f(x) и с первой производной С(х). А теперь вспомните, что решения в нулевом магнитном поле (см. гл. 11, §3) изображают частицу с эффективной массой mэфф, даваемой формулой
Kb2=h/mэфф
Если вы затем положите Е0=+2К и снова вернетесь к f(x)=(q/h)Ax, то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверждение (19.1) о том, что векторный потенциал умножает все амплитуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса (h/i)Сзаменяется на (h/i)С-qA, как мы и сделали в уравнении Шредингера (19.3).
§ 2. Уравнение непрерывности для вероятностей
Перехожу теперь ко второму пункту. Важную сторону уравнения Шредингера отдельной частицы составляет идея о том, что вероятность обнаружить частицу в каком-то месте определяется квадратом абсолютной величины волновой функции. Для квантовой механики характерно также то, что вероятность сохраняется локально (т. е. в каждом отдельном месте). Когда вероятность обнаружить электрон в таком-то месте убывает, а вероятность обнаружить его в каком-то другом месте возрастает (так что полная вероятность не меняется), то что-то в промежутке между этими местами должно было произойти. Иными словами, электрон обладает непрерывностью в том смысле, что если вероятность спадает в одном месте и возрастает в другом, то между этими местами должно что-то протекать. Так, если вы между ними поставите стенку, то это скажется на вероятностях и они станут не такими, как были. Следовательно, одно только сохранение вероятности не есть полная формулировка закона сохранения, все равно как одно только сохранение энергии не обладает такой глубиной и не представляет такой важности, как локальное сохранение энергии [см. гл. 27, § 1 (вып. 6)]. Если энергия исчезает, то этому должен соответствовать отток энергии от этого места. Вот и у вероятности хотелось бы обнаружить такой же «ток». Хотелось бы, чтобы было так: если где-нибудь переменится плотность вероятности (вероятность обнаружить что-то там такое в единице объема), то чтобы можно было считать, что вероятность откуда-то сюда притекла (или утекла отсюда куда-то еще). Такой ток был бы вектором, который можно было бы толковать следующим образом: его x-компонента была бы чистой вероятностью (в секунду и на единицу объема) того, что частица пройдет в направлении х через плоскость, параллельную плоскости yz. Проход в направлении +x считается положительным потоком, а проход в обратную сторону — отрицательным потоком.