Чтение онлайн

на главную - закладки

Жанры

Философия Науки. Хрестоматия
Шрифт:

Второй принцип разбиения, который необходимо иметь в виду, - это Уровень строгости теории. Теория в своем становлении проходит ряд этапов, начиная с комплекса общих схематических идей и предпосылок и кончая логически безупречным построением, элиминирующим все интуитивное. При всей важности такого подхода здесь царит полная неопределенность. На практике ученый не доводит свою теорию до идеала логики. При знании средств и путей перехода от «нестрогой» к «строгой» теории эта незавершенность найдет свое оправдание.

Реальный путь познания - движение от нестрогой к строгой теории, путь же изучения метатеоретика обратный - от строгой к нестрогой теории.

Наконец, мы должны обратить внимание и на такое основание, как логический тип теории, т.е. на принципы построения и логические средства научных теорий. Иногда отождествляют всякую строго построенную научную

теорию с аксиоматической системой. На наш взгляд, такое отождествление неправомерно, так как исторически известны иные - не менее строгие - способы построения научных теорий. Так, ряд крупных логиков и математиков различают два метода построения математических теорий: аксиоматический и генетический. <...> С. 417-418.

II

Под аксиоматической теорией понимают научную систему, все положения которой выводятся чисто логически из некоторого множества положений, принимаемых в данной системе без доказательства и называемых аксиомами, и все понятия сводятся к некоторому фиксированному классу понятий, называемых неопределяемыми.

Теория будет определена, если указана система аксиом и совокупность логических средств, применяемых в данной теории. Для аксиоматической теории такими логическими средствами будут правила вывода. Производные понятия в аксиоматической теории суть лишь сокращения для комбинации основных. Допустимость самих комбинаций определяется аксиомами и правилами вывода. Другими словами, определения в аксиоматических теориях носят номинальный характер. (Вариант, когда аксиоматическая система строится на основе так называемых реальных определений, сводится к аксиоматической системе с номинальными определениями и соответствующими аксиомами существования.)

Аксиоматический метод прошел длительную эволюцию. В ряде случаев этапы, им пройденные, не являются лишь историческими ступенями, а соответствующим образом уточненные представляют различные виды или уровни аксиоматического метода. Можно вычленить три таких этапа: содержательной, формальной и формализованной аксиоматик.

Под содержательной аксиоматической теорией понимают теорию относительно некоторой системы объектов, известной до формулировки теории; аксиомы и выводимые из них теоремы говорят нечто об объектах изучаемой системы и могут расцениваться как истинные или ложные. Задача аксиоматической теории состоит в том, чтобы найти такую систему аксиом, чтобы все значимые относительно этой системы объектов общие положения выводились чисто логически из принятой системы аксиом. В качестве примера содержательной аксиоматической системы можно привести термодинамику. Метод содержательной аксиоматики был единственной формой аксиоматического метода до последней четверти прошлого столетия.

Новым этапом и соответственно новым уровнем является формальная аксиоматика, систематически проведенная в «Основаниях геометрии» Д. Гильбертом. При формальной аксиоматике абстрагируются от конкретного содержания понятий, входящих в систему аксиом, и от природы предметной области. В основу формальной аксиоматики кладется система аксиом, затем из этих аксиом получают следствия, которые образуют теорию относительно любой системы объектов, удовлетворяющей положенным в основу аксиомам. В формальной аксиоматике явно выступает ее экзистенциальный характер, так как в ней «имеют дело с постоянной системой вещей, разграниченная прямо область субъектов которой образована для всех предикатов, из которых составляются высказывания теории». Другими словами, аксиоматически-экзистенциальный подход основывается на такой сильной идеализации, как идеализация актуальной бесконечности. Переход к формальной аксиоматике делает необходимым доказательство ее непротиворечивости. Если бы теория была противоречивой, то в ней можно было бы доказать любое положение и она потеряла бы всякую значимость как средство отображения действительности. Каким же образом можно доказать непротиворечивость формальной системы?

Ссылка на соответствующую формальной системе содержательную аксиоматику, т.е. ссылка на определенный фрагмент действительности, ничего не даст. Дело в том, что всякая аксиоматическая система (в том числе и содержательная) есть некоторая упрощенная идеализация, лишь приблизительно соответствующая действительности. Переходя от содержательной аксиоматики к формальной и доказывая непротиворечивость последней, имеют цель доказать внутреннюю пригодность этой идеализации. Ссылка же для доказательства пригодности какой-либо идеализации на саму эту идеализацию явно представляет круг. Сказанное не означает, что непротиворечивость нельзя доказать методом моделей. Как раз, напротив, показав,

что данная система аксиом выполнима, т.е. имеется система объектов, удовлетворяющая ей, тем самым доказывают се непротиворечивость. Но все дело в том, что модель должна быть абстрактной (т.е. взята с точностью до изоморфизма) и каким-то образом точно определена. С. 419-420. Чтобы оправдать такого рода систему аксиом, необходимо указать бесконечную область, для которой она выполняется, но убедиться в существовании бесконечной области можно только через значимость системы аксиом, характеризующих ее. Получается круг. Этот круг можно раздвинуть, т. е. указать модель для данной системы аксиом, определив эту модель через выполнимость некоторой другой системы аксиом. Таким образом удается свести непротиворечивость одной теории к непротиворечивости другой. Так, если система объектов определена через выполнимость системы аксиом ,41 и таким образом определенная система S удовлетворяет системе аксиом ,42, то ,42 будет непротиворечивой, если непротиворечива ,41.

Непротиворечивость одной теории сводится к непротиворечивости другой - круг Раздвигается, по не разрывается.

Чтобы выйти из этого круга, Д. Гильберт предложил доказывать непротиворечивость в отрицательном смысле, т.е. аксиоматическая система непротиворечива, если в этой системе не может быть выведено предложение А и его отрицание.

Для достижения этой цели, согласно программе Гильберта, надо представить аксиоматическую систему в исчислении, трансформировав правила логики в правила оперирования символами, в правила исчисления. После этого вопрос о непротиворечивости аксиоматической системы сводится к доказательству невозможности получения в исчислении формулы определенного вида. Само исчисление, которое является формализацией аксиоматической теории, рассматривают как аксиоматическую систему 3-го уровня. Иногда под аксиоматической системой в строгом смысле слова имеют в виду только исчисление, только формализм. Мы будем называть аксиоматическую систему на этом уровне формализованной теорией, аксиоматическим исчислением. С.420-421.

Генетический метод является методом, в рамках которого изучается формализм. Д. Гильберт считает, что в рамках генетического метода вполне возможно решить вопрос о непротиворечивости исчислений, но он недостаточен для прямого обоснования математики.

Задача обоснования теоретико-множественной системы мышления (на которой основывается аксиоматический метод второго уровня) решается Гильбертом путем формализма (аксиоматической системы третьего уровня) в рамках генетической (рекурсивной) системы мышления. Для Гильберта и формалистов последняя система мышления является слишком слабой, чтобы доставлять интерпретации даже для простых аксиоматических исчислений. Для них генетический метод является лишь средством обоснования аксиоматического метода. С. 422.

III

В чем же характерные особенности генетического метода, безотносительно к частным ограничениям? В чем его отличие от аксиоматического метода? Эго отличие мы видим, во-первых, в способе введения объектов теории и, во-вторых, в логической технике этих теорий.

При аксиоматическом методе область предметов, относительно которой строится теория, не берется за нечто исходное; за исходное берут некоторую систему высказываний, описывающих некоторую область объектов, и систему логических действий над высказываниями теории.

При генетическом подходе отправляются как от исходного от некоторых налично данных объектов и некоторой системы допустимых действий над объектами. В генетической теории процесс рассуждения представлен в «форме мысленного эксперимента о предметах, которые взяты как конкретно наличные». С. 422-423.

Элементарные действия над объектами теории считаются также данными и всегда осуществимыми. Мы абстрагируемся от реальных возможностей осуществления операций. Поэтому в генетической теории рассуждают не только о тех объектах, которые действительно построены, точнее, представители которых построены, но и о тех, которые могут быть построены из уже построенных посредством допустимых действий. Если даны исходные объекты и метод построения какого-то объекта, то о последнем рассуждают как о чем-то уже данном. Объекты теории задаются через указание исходных объектов и процедур получения из данных объектов новых. С. 423.

Поделиться:
Популярные книги

Луна как жерло пушки. Роман и повести

Шляху Самсон Григорьевич
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
Луна как жерло пушки. Роман и повести

Купец I ранга

Вяч Павел
1. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец I ранга

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Многорукий бог Далайна. Свет в окошке

Логинов Святослав Владимирович
Шедевры отечественной фантастики
Фантастика:
научная фантастика
8.00
рейтинг книги
Многорукий бог Далайна. Свет в окошке

Заклинание для хамелеона

Пирс Энтони
Шедевры фантастики
Фантастика:
фэнтези
8.53
рейтинг книги
Заклинание для хамелеона

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Досье Дрездена. Книги 1 - 15

Батчер Джим
Досье Дрездена
Фантастика:
фэнтези
ужасы и мистика
5.00
рейтинг книги
Досье Дрездена. Книги 1 - 15

Предложение джентльмена

Куин Джулия
3. Бриджертоны
Любовные романы:
исторические любовные романы
8.90
рейтинг книги
Предложение джентльмена

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

А небо по-прежнему голубое

Кэрри Блэк
Фантастика:
фэнтези
5.00
рейтинг книги
А небо по-прежнему голубое