Философия
Шрифт:
1 Фёрстер Г. О самоорганизующихся системах и их окружении // Самоорганизующиеся системы. М., 1964. С. 116.
2 См.: Хакен Г. Синергетика. М., 1980. С. 20-21.
293
Другие исследования были направлены на изучение самоорганизующихся химических реакций, которые впервые экспериментально открыли наши отечественные ученые - сначала Б. Белоусов, затем группа исследователей во главе с А. Жаботинским [1]. Их опыты послужили основой для построения соответствующей теоретической модели ("брюсселятора [2]") бельгийскими учеными под руководством И. Пригожина (русского по происхождению). Было установлено, что в ходе специфических химических реакций возникают определенные пространственные структуры. В других реакциях периодически меняется во времени цвет раствора ("химические
1 См.: Жаботинский A.M. Концентрационные автоколебания. М., 1974.
2 Она названа так по названию г. Брюсселя.
В отличие от классической термодинамики, которая имела дело фактически с закрытыми и равновесными системами, новая теория самоорганизации опирается на неклассическую термодинамику, оперирующую открытыми и неравновесными системами. Согласно этой теории началом процесса самоорганизации служат случайные отклонения системы от точки равновесия, которые называют флуктуациями. Они происходят постоянно, но в первое время эти флуктуации подавляются системой. Поскольку, однако, система взаимодействует с окружающей средой и является неравновесной, то постепенно такие флуктуации не только не ослабляются, но, наоборот, усиливаются. В результате их усиления прежняя динамическая структура, или режим функционирования, "расшатывается", т.е. старые взаимосвязи между элементами системы подвергаются изменениям, и как следствие такого процесса возникают новый динамический режим, структура, или спонтанный порядок.
Все перечисленные термины характеризуют тот же самый общий процесс изменения характера взаимодействия между компонентами, или элементами, системы, хотя называются они по-разному в конкретных исследованиях. В теории систем и ее приложениях предпочитают говорить об изменении структуры систем. В динамическом регулировании - об изменении режима функционирования, в экономике и социальных науках - о воз
294
никновении нового спонтанного порядка, причем эпитет "спонтанный" подчеркивает, что речь в данном случае идет о порядке, возникающем самопроизвольно в силу внутренне присущих системе причин и факторов.
Следует отметить, что понятие порядка раньше применялось лишь по отношению к фиксированным структурам, начиная от взаимосвязи частей в устойчивых системах и кончая расположением атомов в кристаллической решетке. Никакого представления о динамическом порядке, возникающем спонтанно, в классической науке не существовало. Между тем макроскопический динамический порядок играет важную роль не только в биологии и социальной жизни, где структура систем не остается неизменной на протяжении их существования. Даже в неорганической природе многие процессы сопровождаются возникновением динамического порядка, о чем свидетельствуют бесчисленные примеры образования разнообразных форм, начиная от появления водяных вихрей и песчаных дюн и кончая космическими процессами, примером чего могут служить образование колец вокруг Сатурна.
Хотя понятие стабильного порядка является весьма важным для технологии и практической деятельности, оно оказывается весьма ограниченным и даже неудовлетворительным, когда приходится анализировать процессы эволюции и развития систем. Поэтому синергетический подход к определению порядка является необходимым дополнением для дальнейшего исследования развития и систем.
3. Экспликация категории развития
Ознакомившись в общих чертах с принципами самоорганизации, мы можем теперь ближе рассмотреть, как они могут быть использованы для более точной экспликации категории развития. Чисто формально, по традиционному способу определения через ближайший род и видовое отличие мы могли бы представить развитие как особый вид необратимого движения, характеризующийся появлением нового. В свою очередь, движение можно определить как изменение вообще, и тем самым в качестве
295
ного определения раскрывает содержание процессов, характеризуемых соответствующим понятием. Именно для этой цели мы и обращаемся к таким общетеоретическим дисциплинам, как синергетика и теория систем. С помощью их понятий и теорий можно лучше понять и объяснить философскую категорию развития. С точки зрения современных результатов, полученных в этих теориях, можно сформулировать несколько тезисов, которые характеризуют некоторые особенности процесса развития.
# Любой процесс развития может совершаться лишь в открытых системах, т.е. системах, которые взаимодействуют с окружающей средой. Закрытые системы, согласно второму закону термодинамики, могут изменяться лишь в направлении увеличения их энтропии, а следовательно, усиления их беспорядка, хаоса и дезорганизации.
# Условие открытости системы необходимо, но далеко не достаточно, чтобы считать ее самоорганизующейся. Кроме него, важнейшим является требование, чтобы система была достаточно удалена от точки термодинамического равновесия, ибо в противном случае она будет стремиться к состоянию равновесия, закрытости и, следовательно, максимального беспорядка. Необходимо также множество других условий, которые определяются природой соответствующих систем и которые детально анализируются в конкретных науках. Чем выше на эволюционной лестнице находится система, тем больше требований предъявляется к ней, и тем более сложный характер приобретают происходящие в ней процессы самоорганизации.
# Поскольку всякое развитие всегда предполагает возникновение нового, то источником и исходным его пунктом служит появление случайностей. В строго детерминированном мире, где возникновение будущих событий однозначно определено прошлым и настоящим их состоянием, появление случайностей совершенно исключается, и поэтому в таком мире не может появиться что-либо новое, а следовательно, немыслимо и развитие. В этом тезисе находит свое подтверждение гениальная догадка античных философов Эмпедокла и Лукреция Кара о необходимости допущения случайности для развития мира.
# Флуктуации, или случайные отклонения системы, которые рассматриваются в синергетике, по сути дела, являются тем пусковым механизмом, который направляет дальнейшее развитие системы. В принципе флуктуации существуют всегда, но только в открытых неравновесных системах они начинают постепенно накапливаться и усиливаться и в конце концов приводят к раз
296
рушению прежнего порядка и структуры и тем самым способствуют самоорганизации элементов или составных частей системы. Результатом этого процесса служит возникновение новой системы с качественно иной структурой. По этому поводу известный немецкий ученый М. Эйген, автор новой синергетической концепции происхождения жизни, заявляет, что "самоорганизация материи, которую мы связываем с "возникновением жизни", должна была начаться со случайных событий" [1].
1 Эйген М. Самоорганизация материи и эволюция биологических макромолекул. М., 1973. С. 13.
# Признание существования случайностей в мире дает возможность принципиально по-новому подойти и к решению проблемы времени. Действительно, и в классической, и квантовой механике время выступает как простой геометрический параметр, знак которого в уравнениях движения можно менять на обратный. Это означает, что никакие действительные изменения в таком времени не происходят, так как рассматриваемые процессы считаются обратимыми. Хотя классическая термодинамика впервые ясно показала, что тепловые процессы являются необратимыми, тем не менее она связала понятие времени, а точнее, "стрелу времени", или его вектор, с ростом энтропии, или беспорядка, в системе. А это не согласуется ни с интуитивным представлением о времени, ни с эволюционными процессами в биологических и социальных системах.