Физические эффекты и явления
Шрифт:
ками угля на дне вагонеток почти не поддается очистке
даже специальными машинами. Специалисты Новомосковского
института предложили использовать для очистки электро
осмос под воздействием на вагонетку с породой внешнего
электрического поля между ее стенками и грузом (при
движении воды относительно твердой горной массы) созда
ется тончайшая водяная пленка. Такой "прокладке" доста
точно, чтобы налипшая порода легко отделилась от корпу
са вагонетки.
А.с. н 240825: Способ сушки изоляции кабелейц в шахтах
электросетях с изолированной нейтралью, отличающейся
тем, что с целью упрощения процесса токоведущие жилы
кабелей подсоединяют к положительному
постоянного тока, отрицательный полюс которого соединя
ют с землей для осуществления сушки за счет использова
ния явления электросмоса.
3.6.2. Явление обратного осмоса применено (США) для получения питьевой воды из сильно загрязненной или соленой (гипельфильтрации). Непосредственно явление обратного осмоса происходит на границе вода - синтетическое волокно: внутрь волокна проходит только вода, оставляя за бортом соли и грязь. Сама установка состоит из многих миллионов волокон, собранных в жгут и помещенных в стальной цилиндр в который подается "грязная" вода под давлением. Предусмотрен отдельный отбор чистой воды и насыщенного раствора.
Над проектом электростанции, использующей силы осмотического давления, работают сейчас ученые.Принцип действия такой электростанции прост. Трубу с полупроницаемой мембраной опускют в море. На глубине около 230 метров столб воды создает такой перепад давления на мембране, что она начинает работать как опреснитель. Соленая вода тяжелее пресной примерно на два с половиной процента. Чтобы пресная вода поднялась до уровня моря и стала переливаться через край трубы, трубу необходимо опустить на глубину 8750. Переливающаяся вода может вращать турбину.
3.7. Т е п л о м а с с о о б м е н.
Известны три основных механизма теплообмена - конвекция, излучение и теплопроводность, в которой участвуют движущиеся или неподвижные молекулы вещества совершающие тепловые колебания. Передача тепла может сопровождаться перемещением массы или
Очень широко используется при сушке,которая применяется в различных областях техники и технологии. наиболее эффективно процесс сушки идет в колонных аппаратах со встречными потоками: сверху свободно падает вещество, подвергаемое сушке ,а снизу встречным потоком поступает нагретый газ.
В донной же части аппарата подсушенное вещество интенсивно досушивется в ,так называемом "кипящем слое". "Кипящий слой" представляет собой "псевдожидкость" - взвесь твердых частиц, пляшущих в потоках газа, поступающего снизу.
Причем псевдожидкость обладает удивительными теплотехническими свойствамитвердые частицы в ней бурно перемешиваются и великолепно переносят тепло, во много раз лучше , чем такой известный проводник ,как медь.
Псевдожидкость, смачивающая какую-нибудь деталь со скромной скоростью 1м/сек, осуществляет теплообмен столь эффективно,ка чистый газ движущийся со сверхзвуковой скоростью.
Псевдожижжение с равным успехом можно использовать как для передачи тепла, так и для "передачи" холода.
Применение псевдожидкости в печах для высокотемпературного нагрева металла позволит резко уменьшить расход топлива. Существует традиционная система нагрева - через газообразные продукты сгорания к металлу. А газ скорее можно назвать изолятором, чем проводником тепла: коэффициент, характеризующий его способность передавать тепло,равен 200, в то время, как у жидких металлов или расплавов солей этот коэффициент равен 20 000. Намного эффективнее теплообмен осуществляется в кипящей псевдожидкости: сжигаемый газ первоначально отдает тепло песку , а тот, перемешиваясь потоками газа, отдает тепло металлу. Хотя сам песок получает тепло все от того же теплоизолятора газа, однако суммарная поверхность песчинок огромна, и в значительной мере благодаря этому они отбирают у пламени во много раз больше тепла, чем сумела бы отнять нагреваемая заготовка.
3.7.1 Среди
Тепловые трубы сейчас получили широкое применение. Их можно встретить в космической технике, в ядерных реакторах, криогенных хирургических инструментах, в системах охлаждения двигателей. В трубах может выполняться механическая работа за счет энергии движущегося теплоносителя. На их основе, например, создаются МТД-генераторы - теплоносителем в тепловой трубе может быть жидкий металл, и, если поместить трубу в магнитное поле, то в металле (на концах проводника ) наведется электродвижущая сила. Тепловые трубы могут работать в очень широком диапазоне температур. Все зависит от давления внутритрубы и от применяемого теплоносителя.
3.8 Молекулярные цеолитовые сита.
Цеолты являются кристалическими водными алюмосиликатами, они относятся к группе каркасных алюмосиликатов. Каркасы цеолитов содержат каналы и сообщающиеся между собой полости, в которых находятся катионы и молекулы воды. Катионы довольно подвижны и обычно могут в той или иной степени обмениваться на другие катионы.
А.с. N 561233 Полирующий состав для обработки,например, полупроводниковых материалов, содержащий кристалический порошок, окислитель, например, перекись водорода и воду, отличающийся тем, что с целью повышения эффективности процесса полирования, он дополнительно содержит вещество,для катионного обмена, например азотнокислую медь или углекислый аммонит , а в качестве кристаллического порошка взяты алюмосиликаты, например,цеолиты.
Каркасы цеолитов похожи на пчелиные соты и образованы из цепочек анионитов кремния и алюминия. Из-за своего строения каркас имеет отрицательный заряд и этот заряд компенсируется катионами щелочных или щелочноземельных металлов, находящихся в полостях-сотах. Тип цеолита (диаметр его пор ) определяется соотношением кремния и алюминия и типом катионов. Главным образом это вода. Она удаляется при нагревании до 600-800 гр. С, сам каркас при этом не разрушается, он сохраняет первоначальную структуру. Именно поэтому цеолит способен вновь поглащать потерянную воду и другие вещества. Размером пор определяется и размер частиц, способных в них проникать; цеолиты могут как бы просеивать молекулы, сортировать их по размерам. Кроме того они используются как адсорбенты, они в 10-100 раз эффективнее , чем все другие осушители и работают при различных температурах. При -196 гр. С адсорбационная способность цеолитов резко повышается. Они поглощают даже воздух, создавая в сосуде разряжение до 1.0е- мм рт.ст. Цеолиты используют как ионообменники, не разрушающиеся под действием излучения. В качестве катализаторов устойчивы к действию высоких температур,каталических ядов, позволяют гибко менять свойства.