Чтение онлайн

на главную - закладки

Жанры

Физика окружающей среды
Шрифт:

Энергия, преобразованная в биомассу, рассеивается дальше по звеньям трофической (пищевой) цепи. Растения являются первичным продуктом преобразования энергии и называются продуцентами, живые организмы, потребляющие растительную пищу представляют вторичный продукт этого процесса и называются консументами (от английского слова consumption – потребление); организмы, перерабатывающие отходы продуцентов и консументов, представляют собой класс редуцентов.

Таким образом, редуценты замыкают цикл преобразования энергии и материи в биосфере (рисунок 8).

Рис. 8.

Преобразование энергии в биосфере

В каждом из звеньев трофической цепи происходит накопление и рассеяние энергии.

Мощность потока солнечной энергии, достигающий поверхности Земли, равен 1000 Вт/м2. Эта энергия, как показано в таблице, распределяется между многими видами движения органической и неорганической материи.

Таблица 6

Глобальные потоки энергии

Эти данные представляют большой интерес тем, что показывают распределение энергии в разных частях биосферы и дают возможность оценить энергоресурсы, которые могут быть использованы человечеством.

Распределение энергии по звеньям трофической цепи можно оценить, пользуясь уравнением фотосинтеза:

6СО2 + 6Н20 + 8 фотонов C6H12O6 +6О2.

Академик К. А. Тимирязев в 1875 году определил количество фотосинтетической энергии радиации Солнца (8 молей фотонов на частоте красной и сине-зеленой области спектра) равно 16,8 106 Дж. Эта энергия необходима для связывания одного моля СО2 и преобразования его в органику, количество которой эквивалентно 4,8 105 Дж. Отсюда максимальный теоретический КПД фотосинтеза равен 0,3. Эта величина не учитывает расход энергии на образование меж молекулярных связей, на образование более сложных структур, например клеток, на дыхание, испарение и т. п.

С другой стороны, эффективность преобразования солнечной энергии в биомассу можно получить, если рассматривать ее как отношение чистой первичной продукции (реальный прирост массы растений – Р1) к энергии фотосинтетической радиации – Wф. При таком расчете получается, что эффективность:

ф = Р1/Wф <= 0,05

Это очень важная величина, показывающая принципиальное ограничение повышения урожайности. Однако, тот факт, что для многих видов сельскохозяйственного производства у нас этот коэффициент на порядок ниже, дает уверенность в возможности решения продовольственной программы без увеличения площадей.

Как видно из сказанного, энергетика фотосинтеза довольно проста. Однако ситуация чрезвычайно усложняется при переходе к анализу энергетики экосистем, состоящих из трофических цепей разной сложности.

Трудность состоит в том, что первичная энергия на входе в биосистему идет не только на производство биомассы. Часть ее расходуется на дополнительные процессы, такие, как дыхание, транспирация (испарение при дыхании), экскреция. На дыхание уходит 1/3 первичной энергии Wф. Для анализа энергетики трофических цепей вводят две величины продуктивность (валовая продукция)

и продукция (чистая продукция – биомасса). Можно бы упростить задачу, отбросив дополнительные потери энергии. Но при этом можно потерять некоторые и даже многие звенья трофических цепей, например, множество насекомых и микроорганизмов.

Таким образом, исследовать продуктивность – значит определить распределение энергии по звеньям трофической цепи. Определить продукцию – значит оценить реально произведенную био массу, т. е. центнеры с гектара, суточный привес животных и т. п.

Связь между количеством произведенной биомассы Р1 и испаренной растениями влагой описывается линейной зависимостью:

kсР1 = KcтE,

где кс, – коэффициент транспирации, т. е. количество влаги, испаренной с 1 га, т – доля транспирации в полном испарении с единицы площади, Кс – калорийность сухой органической массы, Е – скорость испарения в мм/год, E – количество влаги, испаренной с единицы площади. Среднее значение E равно 400, это значит, что для синтеза 1 т растений требуется 400 т воды.

Полезно сравнить эту вели чину с потребностью воды для искусственного синтеза: для лав сана требуется – 4200 тонн воды при синтезе 1 тонны, для капрона – 5600 тонн! (См. таблицу 4)

Можно только восхищаться совершенством «технологии» при роды. Коэффициент т зависит от характера поверхности, для обработанной почвы 0,4, для необработанной – 0,9. Учитывая, что доля обработанной суши равна примерно 2/3 всей, получим для среднего значения:

т = (2/3) 0,4 + (1/3) 0,9 = 0,55.

Тогда количество произведенной биомассы (чистый продукт) на суше, на площади S и Кс = 19 1013 Дж:

Р = SP1 = KcтSE/кс = 6 x1013 Вт.

Распределение материи в трофической цепи удобно определять в Вт. Эта величина достаточно хорошо совпадает с экспериментально определенной. Теперь необходимо учесть долю энергии, расходуемой на транспирацию:

т = т Lв E/ Wф

где Lв = 25,7 103 Дж/г – скрытая теплота испарения воды.

Связь между т и ф находится из выражения:

ф = Р1/Wф = Kc т/ Lв кт = (7.6/ кс) т

Предполагая, что для поверхности суши, не преобразованной человеком, величина т = 0,9, а значение ф = 0,05, получим т = 0,25.

Это значит, что на транспирацию растений используется до 25 % солнечной энергии, падающей на Землю. А так как возобновляемые запасы пресной воды существуют только благодаря испарению с поверхности океана, то можно считать, что растения используют около 60 % всех возобновимых водных ресурсов. Труд но представить, но это факт. Большая часть всех пресных вод на Земле проходит через биологическую «машину» биосферы.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Том 4. Наша Маша. Из записных книжек

Пантелеев Леонид
4. Собрание сочинений в четырех томах
Проза:
советская классическая проза
5.00
рейтинг книги
Том 4. Наша Маша. Из записных книжек

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Сойка-пересмешница

Коллинз Сьюзен
3. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.25
рейтинг книги
Сойка-пересмешница

Страж Кодекса. Книга III

Романов Илья Николаевич
3. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Страж Кодекса. Книга III

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Невеста драконьего принца

Шторм Елена
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Невеста драконьего принца

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16