Чтение онлайн

на главную - закладки

Жанры

Физика пространства - времени
Шрифт:

В механике Ньютона импульс частицы определяется как произведение массы на скорость. В гл. 1 мы измеряли скорость в метрах расстояния, пройденного за метр светового времени. При таком определении скорости ньютоновское выражение для импульса имеет вид игр. Здесь не утверждается ничего нового об импульсе (и это не релятивистское выражение для импульса!), лишь подчёркивается, что время измеряется в метрах. Но когда время измеряется в метрах, импульс имеет размерность массы. Для того чтобы перейти к обычным единицам (например, кг·м/сек), требуется лишь домножить этот импульс на коэффициент перевода c (скорость света), чтобы перейти от к v, так что

Ньютоновский

импульс

в обычных единицах

=

mc

=

mv

.

Импульс и энергию удобнее всего выражать в единицах массы

Подобным же образом в ньютоновской механике кинетическая энергия частицы определяется как произведение массы на квадрат скорости, разделенное на два. Взяв скорость , измеряемую в м/м, получим ньютоновское выражение для кинетической энергии в виде 1/2 m^2. Здесь не утверждается ничего нового об энергии (и это не релятивистское выражение для энергии!), лишь подчеркивается, что время измеряется в метрах. Но когда время измеряется в метрах, энергия имеет размерность массы; и энергия, и импульс обладают одной и той же размерностью. Для того чтобы перейти к обычным единицам (например, джоулям), требуется лишь домножить эту энергию на коэффициент перевода c^2 (квадрат скорости света), чтобы перейти от ^2 к z, так что

Ньютоновская

кинетическая энергия

в обычных единицах

=

1

2

m^2c^2

=

1

2

mv^2

.

Мы будем обозначать импульс (p) и кинетическую энергию (T), выраженные в единицах массы, без дополнительных значков. Итак, в ньютоновском пределе малых скоростей

p

=

m

малые скорости,

размерность массы

.

T

=

1

2

m^2

(67)

При этом мы снабдим обозначения для импульса и энергии в обычных единицах индексом «обычн», подчёркнуто громоздким, чтобы вызвать неприязнь к использованию обычных единиц. Тогда в ньютоновском пределе малых скоростей

p

обычн

=

mv

малые скорости,

обычные единицы

.

T

обычн

=

1

2

mv^2

(68)

В этой главе мы выведем релятивистские выражения для энергии и импульса в единицах массы. Энергия и импульс, выраженные в единицах массы, могут быть просто переведены в величины обычной размерности путём умножения соответственно на c и c^2. Эти результаты подытожены (в обеих системах единиц) на внутренней стороне обложки книги.

11. ИМПУЛЬС

Из соображений симметрии следует, что импульс параллелен скорости

Много ли можно узнать об импульсе, не обращаясь к эксперименту, а просто из сведений, которыми мы располагаем о структуре пространства-времени? В частности, если вообще существует для каждой частицы такая векторная величина, которую мы называем «импульс», причём сумма этих величин для всех частиц при взаимодействиях последних сохраняется, то как должен импульс любой частицы зависеть от её скорости? Так как импульс — величина векторная, нам следует прежде всего выяснить направление этого вектора для данной частицы и уже затем найти зависимость его модуля от её скорости. Начнём с обоснования того, что вектор импульса частицы ориентирован по

направлению её движения. Этот вывод можно получить из соображений симметрии — мощного метода физического анализа — следующим образом. В инерциальной системе отсчёта пространство одинаково во всех направлениях, так что мы называем его изотропным. Раз это так, то одним-единственным направлением, связанным с движением прямолинейно летящей частицы, может быть лишь то направление, в котором происходит это движение. Если бы вектор импульса частицы не был направлен в точности по её движению, а составлял, скажем, угол 30° с направлением движения частицы, то существовало бы громадное множество векторов, все повёрнутые на 30° по отношению к направлению движения и совершенно равноправные, каждый из которых мог бы изображать импульс. Но ведь пространство изотропно! Поэтому мы не могли бы предпочесть ни одного из этих векторов остальным. Но, однако, мы предположили, что импульс определяется однозначно как по своему модулю, так и по направлению, если задана скорость. Значит, мы столкнулись с противоречием, от которого можно избавиться, лишь приняв, что вектор импульса должен лежать вдоль направления движения частицы. Но это значит, что можно выбрать его как параллельным, так и антипараллельным этому направлению, и мы произвольно выбираем направление вектора импульса, совпадающее с направлением скорости частицы 1). Итак, можно окончательно сказать, что вектор импульса частицы совпадает по направлению с её скоростью.

1) Мы могли бы, конечно, выбрать направление вектора импульса частицы противоположным (антипараллельным) направлению ее движения. Такой выбор соответствовал бы симметрии данной задачи и не приводил бы ни к каким физическим противоречиям, если его распространить на все частицы. В таком случае импульсы отдельных частиц и полный импульс системы обладали бы направлениями, противоположными направлениям соответствующих импульсов, определенных выше. Однако по традиции мы ориентируем вектор импульса частицы в том же направлении, какое имеет ее скорость.

Нахождение зависимости импульса от скорости на основании закона сохранения импульса

Итак, мы знаем уже, как направлен вектор импульса частицы. Вторым этапом исследования будет определение абсолютной величины (модуля) этого вектора. Это можно сделать, потребовав, чтобы полный импульс сохранялся при упругих столкновениях. Вместе со свойством инвариантности интервала в лоренцевой геометрии это требование окажется достаточным для того, чтобы показать, что ньютоновское выражение для импульса

p

=

m

(=m th )

=

Смещение за

единицу времени

должно быть заменено релятивистской формулой

p

=

m sh

=

m

1-^2

=

=

Смещение за

единицу собственного времени

(69)

Если скорость мала (т.е. мал параметр ), точное релятивистское выражение (69) приближённо совпадает с ньютоновским выражением.

При соответствующем выборе системы отсчёта полный импульс до столкновения равен нулю

Рис. 82. Скользящее упругое столкновение, наблюдаемое в системе отсчёта, которая движется таким образом, что оба шара имеют до столкновения одинаковые скорости, но движутся во взаимно противоположных направлениях.

Рассуждения, приведённые в тексте, показывают, что после упругого столкновения оба шара движутся вновь с их первоначальными скоростями, а направления их движения снова взаимно противоположны, если их наблюдать в той же системе отсчёта.

Поделиться:
Популярные книги

Новобрачная

Гарвуд Джулия
1. Невеста
Любовные романы:
исторические любовные романы
9.09
рейтинг книги
Новобрачная

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2

И вспыхнет пламя

Коллинз Сьюзен
2. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.44
рейтинг книги
И вспыхнет пламя

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Аргумент барона Бронина 2

Ковальчук Олег Валентинович
2. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 2