Физика пространства - времени
Шрифт:
Ж. МЕЖЗВЁЗДНЫЕ ПОЛЁТЫ
104*. Трудности межзвёздных полётов 1)
1) См. Edward Purcell, in Interstellar Communication, ed. A.G.W. Cameron, Benjamin, New York, 1963. [Русский перевод: Межзвёздная связь, изд-во «Мир», М., 1966.]
Игнорируя полностью все технические затруднения, рассмотрим лишь те трудности полётов в межзвёздные просторы, которые вызываются самой теорией относительности. Пусть имеется (в 1989 г.?) ракетный двигатель, обладающий ничтожной массой. В нем можно регулировать соединение материи и антиматерии, поступающей из баков, причём возникают одни лишь фотоны, и двигатель направляет всё это излучение в нужную сторону.
а) Воспользуйтесь результатами упражнения 58 для определения полной массы топлива, необходимого для путешествия по замкнутому маршруту. (Но не учетверённой величины массы того топлива, которое необходимо для единичного акта ускорения ракеты из состояния покоя до её максимальной скорости!)
б) Чему равно расстояние (в световых годах) до самой далёкой звезды, которой можно достигнуть за время жизни астронавта (предполагаемая продолжительность жизни человека в 1989 г. 100 лет)? (Для простоты пренебрегите временем работы двигателей ракеты по сравнению со значительно более длительным сроком полёта с постоянной скоростью). Какой (приблизительно) промежуток времени пройдёт на Земле в течение этого полёта?
в) Приняв плотность межзвёздной среды равной одному атому водорода на кубический сантиметр, укажите, чему равна кинетическая энергия этих атомов (в Бэв) в системе отсчёта ракеты, движущейся с максимальной скоростью? Сколько таких частиц будет попадать на 1 м лобовой поверхности ракеты в секунду и насколько велико это число по сравнению с мощностью пучка протонов высокой энергии от ускорителя (около 10^1^2 протонов в секунду, каждый с энергией порядка 10 Бэв)? Для защиты работников от чрезмерного облучения на таком ускорителе устанавливают щит из железобетона толщиной 3—4 м. Оцените теперь возможности межзвёздных космических путешествий!
3. ФИЗИКА ИСКРИВЛЁННОГО ПРОСТРАНСТВА-ВРЕМЕНИ
Только исторический подход освобождает дух от засилья прошлого; он поддерживает его самостоятельность и стремится лишь внести ясность.
Бенедетто Кроче
Для того чтобы понять нынешнее значение физики пространства-времени, едва ли не лучше всего вспомнить, как она выковывалась тружениками науки в прошлом. Рассказ о том, как она продвигалась вперёд, постоянно проводя разведку боем, никак нельзя полностью вместить в несколько десятков страниц; но вместе с тем нельзя и обойти несколько великих имён и поворотных пунктов, предопределивших её развитие. Приступая к рассказу о её истории, мы надеемся разобраться — по крайней мере в общих чертах — во взаимоотношении физики локальных лоренцевых систем отсчёта и физики в более обширных областях пространства-времени, таких, как околоземное космическое пространство или солнечная система в целом.
Изменение духа физики при расширении пространственно-временных масштабов.
Галилей и Ньютон считали, что движение можно адекватно описать в жёсткой эвклидовой системе отсчёта, распространённой на всё пространство и сохраняющейся неизменной во все времена. Такая система остаётся вне изменений, происходящих с веществом и с энергией. В этом идеальном пространстве Галилея и Ньютона действует таинственная сила тяготения, контрабандой занесённая из мира физики, чуждое влияние, не описываемое геометрией. Напротив, Эйнштейн утверждает, что нет никакого таинственного тяготения — налицо лишь структура самого пространства-времени.
Эйнштейн против Ньютона — множество инерциальных систем отсчёта, каждая из которых локальна, против единой глобальной системы
Он
Как развивались воззрения Галилея, Ньютона и Эйнштейна? И в чём, собственно, смысл странного выражения «кривизна пространства-времени»?
Общеизвестно глубочайшее противоречие между результатами опытов Галилея по свободному падению и утверждением Аристотеля о том, что «нисходящее движение масс золота, или свинца, или любых иных весомых тел происходит тем быстрее, чем больше их вес». За несколько лет до опытов Галилея Молетти в Падуе утверждал, что свинцовые и деревянные грузы падают одинаково быстро, но этого утверждения было недостаточно, чтобы опровергнуть взгляд Аристотеля. Для окончательного доказательства потребовалось вмешательство Галилея. Неясно, бросал ли Галилей свинцовые и деревянные грузы с «Падающей башни» в Пизе, но он определённо провёл более убедительные эксперименты с потенциально более высокой степенью точности, чем опыт с «Падающей башни» 1).
1) Подробности см. в книге Галлилео Галлилея «Диалоги о двух науках», впервые опубликованной в марте 1638 г. [Русский перевод: Галлилей, Диалоги о двух новых науках, ОНТИ, М., 1937.]
ГАЛИЛЕО ГАЛИЛЕЙ
Пиза, 14 февраля 1564 г. — Арчетри, близ Флоренции, 8 января 1642 г.
«Мой портрет уже закончен, сходство очень хорошее, рука отличного мастера». 22 сентября 1635 г.
* * *
«Если кто-либо и когда-либо мог претендовать на то, чтобы быть выделенным из числа других людей за свой разум, так это Птоломей и Коперник, заслуга которых в том, что они дальше всех заглянули в Систему Мира и наиболее глубоко её исследовали».
* * *
«Дорогой мой Кеплер, что мы сделаем со всем с этим? Будем ли смеяться или плакать?»
* * *
«Когда же я перестану удивляться?»
Кто, вступая на путь первооткрывателя закона ускоренного падения, мог обойти исследование полёта снаряда? Изучая этот полёт и стремясь описать его простейшим образом, Галилей должен был прийти к мысли о сложении движений — движения по вертикали с постоянным направленным вниз ускорением и горизонтального движения с постоянной скоростью (равномерного переноса). Отсюда оставался всего лишь шаг до принципа относительности в первой из его известных формулировок. Вот что говорят действующие лица в книге Галилея 2):