Чтение онлайн

на главную - закладки

Жанры

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
Шрифт:
Копенгагенский дух

В 1929 году был опубликован труд Гейзенберга «Физические принципы квантовой теории», знакомство с которым сразу же стало обязательным для всех изучающих квантовую механику. Во введении ученый писал, что его целью было способствовать распространению «копенгагенского духа квантовой теории», определявшего развитие атомной физики того времени. Гейзенберг выступил на множестве конференций и опубликовал многочисленные статьи о квантовой механике, ее интерпретации и связанных с ней философских вопросах. Автором этой интерпретации был Нильс Бор, и Гейзенберг назвал ее «копенгагенской интерпретацией» квантовой механики. Название прижилось и используется до сих пор. Ниже мы попытаемся изложить его смысл.

Бор представил первую версию своей интерпретации на конференциях, прошедших в итальянском городе Комо и в Брюсселе в сентябре и октябре 1927 года соответственно.

Позднее он внес в свои рассуждения уточнения и поправки, однако суть концепции не менялась. Иногда копенгагенскую интерпретацию называют ортодоксальной, так как она занимает доминирующее положение в физике. Существуют альтернативные интерпретации квантовой механики, однако ни одна из них не является простой, согласованной и точно описывающей результаты экспериментов. Возможно, британско-американский ученый Энтони Джеймс Леггетт был прав, предложив название «копенгагенская неинтерпретация», имея в виду, что любая попытка интерпретации квантовой механики с помощью интуитивно понятных терминов обречена на провал. Интуитивно понятные термины основаны на законах классической физики, к которым относятся, в частности, представление о непрерывности пространства и времени, четкое различие между частицей и волной, закон причинно-следственной связи и принцип детерминизма. Если в классической физике свойства предметов не зависят от того, каким образом мы их измеряем, то в квантовой физике все обстоит иначе: существуют величины, которые изменяются дискретно, квантовая частица может вести себя как частица и как волна одновременно, на смену принципу детерминизма приходят квантовые вероятности, определенные пары величин нельзя одновременно измерить с произвольной точностью, результаты экспериментов нельзя трактовать как информацию о независимых свойствах объектов и так далее.

Копенгагенская интерпретация основывается на трех базовых принципах: принципе дополнительности, вероятностной трактовке волновых функций и принципе неопределенности Гейзенберга. Мы уже упоминали о двух последних, поэтому скажем несколько слов о принципе дополнительности. Бор говорил, что классическая теория подтверждается результатами экспериментов, проведенных с помощью измерительных приборов: весов, термометров, вольтметров и др. При изучении материи на атомном уровне классическая теория достигла предела, и для описания явлений в этом масштабе потребовалось применить законы квантовой механики. Бор подчеркнул, что квантовая механика изменила классическую физику, однако ее корректность подтверждается все теми же измерительными приборами. Иными словами, хотя квантовые явления представляют собой нечто принципиально новое, показания приборов по-прежнему трактуются согласно принципам классической физики, так как, по выражению Бора, только классическая физика представляет собой «язык, лишенный двусмысленности». При описании результатов наблюдений в ее терминах можно избежать логических парадоксов, вызванных корпускулярноволновым дуализмом. Понятия частицы и волны, определенные в классической физике, являются взаимоисключающими, однако в квантовой физике без них нельзя обозначить свойства объекта, который ведет себя как частица или как волна в зависимости от проводимого эксперимента. Следовательно, эти понятия дополняют друг друга. Принцип дополнительности действует не только для частиц и волн, но и, например, для положения и скорости квантового объекта.

Эйнштейн в числе прочих физиков не был готов согласиться с этим выводом, и его дискуссии с Бором, посвященные данным вопросам, оказались крайне продуктивными. Эйнштейн описал мысленные эксперименты (то есть возможные логически, но нереализуемые на практике из-за технических ограничений), которые доказывали некорректность интерпретации Бора, однако Бор неизменно опровергал все возражения оппонента. Больше всего проблем вызвал так называемый парадокс Эйнштейна – Подольского – Розена, опубликованный в 1935 году. Представьте себе две частицы, которые появились в одной точке и начали движение в противоположных направлениях, например в результате распада какой-либо частицы. Импульсы этих частиц равны и имеют противоположные направления. Если мы измерим положение одной частицы и импульс другой в момент, когда они настолько удалены друг от друга, что какое-либо взаимодействие между ними отсутствует, то сможем одновременно определить обе эти величины для каждой из частиц по отдельности. Следовательно, принцип Бора, согласно которому одновременно измерить эти величины с произвольной точностью нельзя, не выполняется.

В свое время заголовки некоторых газет гласили, что Эйнштейн обрушился с нападками на квантовую теорию, однако журналисты не поняли сути вопроса: речь шла не о корректности квантовой механики как таковой, а о ее интерпре-

Фрагмент письма Гейзенберга к Паули от 23 февраля 1927 года, где изложены основы принципа неопределенности, который является частью копенгагенской интерпретации.

Гейзенберг

и Бор (на фотографии внизу) с Максом Борном были основными носителями копенгагенского духа.

тации и связанных с этим философских проблемах. В целом эти вопросы крайне важны с концептуальной точки зрения, однако не интересуют большинство физиков, так как не имеют отношения к исследованиям. Как правило, ученые увлекаются проблемами, позволяющими делать прогнозы, истинность которых либо подтверждается экспериментально, либо следует из непротиворечивости самой теории.

У Бора больше, чем у кого-либо другого, я научился этой новой теоретической физике, которая была едва ли более экспериментальной, чем математика. […] Здесь важно найти нужные слова и понятия, чтобы описать любопытную физическую ситуацию, крайне сложную для понимания.

Гейзенберг в беседах с историком науки Томасом Куном, 1963 год

Эксперимент, проведенный в 1982 году Аленом Аспектом, Жаном Далибаром и Жераром Роже, изменил все. Он подтвердил самые парадоксальные прогнозы квантовой механики, и это заставило некоторых сказать: метафизика стала экспериментальной. Кроме того, был сделан шаг к развитию квантовой информатики, одним из истоков которой можно назвать парадокс Эйнштейна – Подольского – Розена.

Споры о терминологии

Принцип, соотношение или неравенство? Неопределенность, неточность, недетерминированность? Различные сочетания этих слов обозначают одно и то же, что приводит к путанице. Этой путаницы можно избежать, если использовать наиболее нейтральное словосочетание – неравенства Гейзенберга.

В физике принципом обычно называется фундаментальная гипотеза, как правило, подтвержденная экспериментально, которая служит основой для исследований в той или иной области. В качестве примера можно привести принцип Архимеда, принцип Паскаля и принципы термодинамики. Первые два принципа доказаны уже давно, однако они по-прежнему называются принципами в силу привычки или в знак уважения к их авторам. Гейзенберг не использовал этот термин, так как не постулировал свои результаты, а вывел их, поэтому будет уместнее говорить о теореме или о неравенствах Гейзенберга. Более деликатным является другой вопрос. Слово «неопределенность» подразумевает, что субъект не имеет четких знаний о чем-либо. На этом основании некоторые утверждают, что неравенства Гейзенберга накладывают ограничения на субъективные знания о природе, но не говорят ничего о самой природе. Следующим шагом в этих рассуждениях может стать отрицание любого объективного знания, и некоторые совершают этот шаг без каких-либо затруднений. Однако физики (а вместе с ними – и автор данной книги) вкладывают в это слово совершенно иной смысл.

Гейзенберг использовал слово Ungenauigkeit, что переводится как «неточность». Таким образом, речь идет не о субъекте, а об объекте эксперимента, о результатах измерения – именно так иногда объясняют смысл неравенств Гейзенберга. При измерении некой величины в лаборатории эксперименты повторяются достаточно большое число раз, что позволяет определить точность результата. Неточность имеет отношение к среднеквадратичному отклонению, то есть отклонению наблюдаемых значений от среднего. Слово «неточность» указывает, что неравенства Гейзенберга накладывают ограничения на измерения, которые можно выполнить в лаборатории, но это не так. Любую величину, указанную в неравенствах Гейзенберга, в частности импульс и положение электрона, можно измерить по отдельности с произвольно высокой точностью, по крайней мере теоретически. Смысл неравенств Гейзенберга заключается в том, что эта точность не может быть достигнута при одновременном измерении величин. Но так как волновая функция обозначает плотность вероятности, то можно с точностью определить среднее положение и импульс, которые обычно называют х и р соответственно, а также их среднеквадратичные отклонения Ах и Ар, рассчитываемые как квадратные корни средних значений (х – х)2 и (р-р)2 . Поэтому можно связать смысл этих величин с измерением.

Я считаю, что существование классической «траектории» можно определить следующим образом: «траектория» существует только тогда, когда мы ее наблюдаем.

Гейзенберг в статье о принципах неопределенности, 1927 год

Неравенства Гейзенберга в немецком языке также обозначаются словом Unscharferelation, a Unscharfe – это «нечеткость». Можно также использовать слово «недетерминированность», которое не указывает ни на ограниченность знаний субъекта, ни на сложности с проведением измерений. Неравенства Гейзенберга означают, что постоянная Планка – это универсальная мера недетерминированности, вносимой корпускулярно-волновым дуализмом и возникающей ввиду того, что мы продолжаем использовать классические понятия для описания квантовых явлений.

Поделиться:
Популярные книги

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Наследие Маозари 5

Панежин Евгений
5. Наследие Маозари
Фантастика:
фэнтези
юмористическое фэнтези
5.00
рейтинг книги
Наследие Маозари 5

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам