Чтение онлайн

на главную - закладки

Жанры

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
Шрифт:

В марте 1932 года англичанин Джеймс Чедвик с незначительными изменениями повторил эксперимент, проведенный Вальтером Боте и Гербертом Бекером в Берлине и супругами Жолио-Кюри в Париже. При облучении бериллиевой мишени потоком альфа-частиц, которые представляют собой ядра атомов гелия, наблюдался пучок нейтральных частиц. Их масса примерно в 1,007 раза превышала массу протона, и эти новые частицы могли выбить протоны из поглотителя – парафина. Это подобно лобовому столкновению бильярдных шаров, когда первый шар останавливается, а второй начинает движение с той скоростью, с которой до этого двигался первый. Чедвик пришел к выводу: наблюдаемая частица была тем самым нейтроном, о котором говорил Резерфорд. Он попытался описать структуру атомного ядра, хотя не вполне четко представлял, как это сделать.

Бор считал, что квантовая теория объясняет явления, происходящие на атомном уровне, но для описания явлений на уровне ядер атомов,

то есть на расстояниях примерно в сто тысяч раз меньше, необходима новая теория. Гейзенберг показал, что законы квантовой механики достаточно применить к системе из протонов и нейтронов. Так как положительно заряженные протоны отталкиваются, должна существовать сила, удерживающая протоны и нейтроны внутри ядра. Эта сила должна действовать только на малых расстояниях – в противном случае размер атомного ядра будет намного больше, чем показывали эксперименты. О нейтроне было известно лишь то, что он существует, и велись споры о том, был ли нейтрон особым видом связи протона и электрона или новой элементарной частицей.

Атом водорода имеет изотоп под названием дейтерий, ядро которого состоит из нейтрона и протона. Гейзенберг начал изучать ядро дейтерия под названием дейтрон и заметил его сходство с молекулой ионизированного водорода Щ, состоящей из двух протонов и электрона. Стабильность молекулы была вызвана тем, что два протона обмениваются электроном между собой, а энергия взаимодействия тратится на поддержание стабильности молекулы. Напомним, что Паули не удалось описать эту молекулу в рамках старой квантовой теории. Первым подробный анализ молекулы H*2 с помощью законов квантовой механики провел Эдвард Теллер.

Обозначения ядер атомов

Ядро атома состоит из протонов и нейтронов, число которых обозначается Z и N соответственно. Нейтральный атом содержит то же число электронов Z. Это число называется атомным, или зарядовым числом и определяет химические свойства элементов. Так как масса протона и нейтрона более чем в 1800 раз превышает массу электрона, масса атома в первом приближении равна сумме масс протонов и нейтронов в его ядре. Поэтому массовое число атома определяется как А = Z + N. Изотопы химических элементов отличаются только числом нейтронов (или, что аналогично, массовым числом), однако обладают одинаковыми химическими свойствами. Для обозначения одного и того же изотопа используются различные способы, например символ химического элемента и три описанных выше числа. Изотоп обозначается следующим образом: AZСИМВОЛN . Часто один из индексов не указывается, так как подобная нотация является избыточной. К примеру, обозначения 23892U146 , 23892U и 238U соответствуют одному и тому же изотопу урана с массовым числом 238. Иногда для удобства используется обозначение U238 или уран-238. Иногда символ химического элемента не указывается, как, например, в обозначении (A, Z), особенно при записи ядерных реакций.

Молекулу H+2 можно представить как протон и пару протон-электрон, которые постоянно меняются ролями, так как электрон переходит от одного протона к другому. Гейзенберг предположил, что нейтрон и протон в дейтроне должны меняться ролями аналогичным образом. Но как могут меняться ролями две разные частицы? Гейзенберг предложил следующее объяснение: нейтрон и протон представляют собой два квантовых состояния одной и той же частицы, которая в 1941 году получила название нуклон. Эти два состояния различаются электрическим зарядом и небольшой частью массы. Сегодня говорят, что протон и нейтрон различаются изотопическим спином. Эту гипотезу Гейзенберг применил для изучения более тяжелых ядер, и ему удалось показать, что более легкие ядра (до 40 нуклонов) содержат примерно одинаковое число протонов и нейтронов, а более тяжелые ядра должны содержать больше нейтронов, чем протонов, чтобы компенсировать силы отталкивания между протонами.

В конечном итоге Гейзенберг доказал важность обменного оператора для объяснения стабильности различных систем и их свойств.

Квантовая электродинамика

В конце 1920-х годов квантовая механика стала основой изучения атомных явлений, а квантовая и релятивистская динамика электрона в атоме водорода объяснялась с помощью уравнения Дирака, опубликованного в 1928 году. Одним из важных следствий этого уравнения

является существование спина электрона. Кроме того, уравнение предсказывает существование позитрона – идентичной электрону частицы с положительным зарядом. Любопытно, что именно уравнение Дирака стало источником вдохновения для всех авторов-фантастов, писавших об антиматерии.

Основной источник информации о том, что происходит внутри атомов, – это электромагнитное излучение, которое испускается или поглощается во время квантовых скачков электронов между стационарными состояниями. Излучения не существует ни до момента его испускания, ни после того, как оно будет поглощено. Для объяснения этого эффекта требовалось установить связь между электронами и светом в рамках квантовой механики. Первый шаг в нужном направлении сделали Паули и Йордан в 1928 году, описав электромагнитные волны с помощью фотонов и проведя так называемую квантификацию электромагнитного поля. Казалось, все было готово для создания квантовой теории поля для электронов, позитронов и света. Однако появилась она лишь через несколько лет, пока не удалось решить некоторые проблемы. Любая заряженная сфера обладает энергией излучения, обратно пропорциональной ее радиусу. Судя по всему, электрон имеет нулевой радиус, поэтому его энергия излучения бесконечно велика. Если же предположить, что радиус электрона отличен от нуля, мы придем к выводу, несовместимому с теорией относительности. Как видите, в любой формулировке возникают бесконечно большие величины, которые делают расчеты невозможными.

Элементарные частицы в 1930-е годы

После открытия нейтрона физики сочли, что материя состоит из четырех элементарных частиц: электрона (e), протона (p), нейтрино (v, читается «ню») и нейтрона (n). Электрон и протон имеют электрический заряд (отрицательный и положительный соответственно), модуль которого называется элементарным зарядом (-1,60 х 10– 19 Кл). Нейтрино и нейтрон, как следует из названий, не имеют заряда. Этим частицам соответствуют античастицы (они обозначаются теми же символами, но с чертой вверху e, p v, n), из которых только одна частица, антиэлектрон, имеет собственное название – позитрон. Свободный нейтрон распадается на следующие частицы: n->p + e + v. Однако в ядре нейтрон стабилен, за исключением случаев присутствия излишнего числа нейтронов. В этом случае вышеописанный процесс соответствует бета-распаду ядер и обозначается так: (A,Z)->(A,Z+l) + e +v.

Загадочный нейтрино

Описанная модель имела один важный недостаток. Ранее бета-распад понимался как процесс, в ходе которого ядро (A, Z) преобразовывалось в новое ядро (A, Z + 1) и испускало электрон. Измерения показали, что начальная энергия была больше энергии, полученной новым ядром и свободным электроном, и это противоречит закону сохранения энергии. Паули предположил, что подобное несоответствие обусловлено существованием особой частицы, нейтрино, которая имеет очень малую массу и почти не взаимодействует с материей. Нейтрино впервые был обнаружен в 1950-е, и хотя его масса до сих пор не определена, известно, что она меньше двух миллиардных долей массы протона. Нейтрино почти не взаимодействуют с материей: каждую секунду через наше тело проходит примерно 1012 нейтрино, но мы их совершенно не замечаем. Великое множество этих частиц возникает в результате химических реакций, происходящих внутри Солнца. Сегодня известно, что протоны и нейтроны – это не элементарные частицы. Они состоят из u-кварков и d-кварков (протон p = uud, нейтрон n = udd). Вся материя образована четырьмя частицами – u, d, e, v – и соответствующими античастицами (то есть имеющими противоположный заряд). Существуют еще две группы частиц, подобных частицам первого семейства, но с большей массой. Они проявляются в лабораторных экспериментах и при реакциях с космическими лучами.

Бор по-прежнему настаивал на том, что для описания явлений на уровне элементарных частиц необходима новая теория. Гейзенберг, разделяя эту точку зрения, предположил, что Вселенную можно представить как огромную кристаллическую решетку. Космос – это решетка из крошечных кубических ячеек размером с элементарную частицу. Ячейки представляют собой наименьшую универсальную единицу длины, а на меньших расстояниях современная квантовая теория будет неприменима. Однако эти идеи не вели к каким-либо конкретным результатам, и в 1931 году Гейзенберг написал Бору: «[…] Я отказываюсь рассматривать фундаментальные вопросы, которые для меня слишком сложны». Лишь появление новых результатов, связанных с космическими лучами, заставило Гейзенберга через два года изменить точку зрения.

Поделиться:
Популярные книги

Мама из другого мира...

Рыжая Ехидна
1. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
7.54
рейтинг книги
Мама из другого мира...

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Оживший камень

Кас Маркус
1. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Оживший камень

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Мастер клинков. Начало пути

Распопов Дмитрий Викторович
1. Мастер клинков
Фантастика:
фэнтези
9.16
рейтинг книги
Мастер клинков. Начало пути