Глаз и Солнце
Шрифт:
Точка С волны AC в некоторый промежуток времени продвинется до плоскости АВ к точке В по прямой СВ, которую должно представлять себе исходящей из светящегося центра и которая, следовательно, перпендикулярна к AC. Но за тот же промежуток времени точка той же волны А не могла – по крайней мере, отчасти – сообщить свое движение за пределы плоскости АВ и должна была продолжить свое движение в материи, находящейся над этой плоскостью, притом на протяжении, равном СВ; вместе с тем она должна была, согласно сказанному выше, образовать свою отдельную сферическую волну. Указанная волна изображена здесь окружностью SNR, центр которой в А, а полудиаметр AN равен СВ.
Если
Но все эти окружности, как это легко видеть, имеют общей касательной прямую BN, т. е. ту же прямую, которая является касательной из точки В к первому из этих кругов, центром которого была точка А, а полудиаметром, равным прямой ВС, AN.
Итак, прямая BN (заключенная между точками В и N, на которую падает перпендикуляр из точки А) как бы образована всеми этими окружностями и заканчивает движение, возникшее при отражении волны AC; в этом месте поэтому движение имеется в гораздо большем количестве, чем где-либо. Поэтому, согласно объясненному выше, BN является распространением волны AC в тот момент, когда ее точка С достигла точки В. Действительно, нет другой прямой, которая, как BN, была бы общей касательной всех данных кругов, если не считать BG под плоскостью АВ; эта BG была бы продолжением волны, если бы движение могло распространяться в среде, однородной с той, которая находится над плоскостью. Если мы хотим видеть, как волна AC постепенно достигла BN, то достаточно провести в той же фигуре прямые КО, параллельные BN, и прямые KL, параллельные AC. Тогда мы увидим, что волна AC из прямой последовательно становится ломаной во всех положениях OKL и снова становится прямой в NB.
Рис. 57
Но отсюда видно, что угол отражения оказывается равным углу падения. <….>
Рассматривая предшествующее доказательство, можно было бы сказать, что хотя BN действительно является общей касательной всех круговых волн в плоскости этого рисунка, но что эти волны, будучи на самом деле сферическими, имеют, кроме того, еще бесконечное число подобных касательных, которыми будут все прямые, проведенные из точки В по поверхности конуса, образуемого прямою BN при вращении вокруг оси BA. Остается, следовательно, показать, что в этом обстоятельстве не имеется никакой трудности; заодно выяснится, почему падающий и отраженный лучи находятся всегда в одной и той же плоскости, перпендикулярной к отражающей плоскости. И вот я говорю, что волна AC, рассматриваемая только как линия, не производит света. Дело в том, что видимый световой луч, как бы он ни был узок, всегда имеет некоторую толщину; поэтому, чтобы представить волну, продвижение которой производит этот луч, нужно вместо линии AC взять плоскую фигуру, подобно кругу HC на данном рисунке (рис. 57), предполагая, как было сделано раньше, что светящаяся точка бесконечно удалена. Но из предшествующего доказательства легко видеть, что каждая маленькая точка этой волны HC, достигнув плоскости АВ, породит там свою отдельную волну, и все эти волны, когда точка С достигнет точки В, будут иметь общую касательную плоскость, а именно круг BN, равный СН; этот круг будет пересечен посредине под
Я утверждал в предшествующем доказательстве, что движение точки А падающей волны не может, по крайней мере полностью, передаться за плоскость АВ. Здесь надо заметить, что хотя движение эфирной материи и передалось частью материи отражающего тела, но это ни в чем не может изменить скорость продвижения волны, от которой зависит угол отражения. В самом деле, в одном и том же веществе легкий удар должен вызвать столь же скорые волны, как и очень сильный удар. Это зависит от одного свойства обладающих упругостью тел, а именно: что и слабо и сильно сжатые тела восстанавливают свою форму в одинаковое время. Следовательно, при всяком отражении света от какого бы то ни было тела углы падения и отражения должны быть равными, хотя бы даже это тело и обладало свойством отнимать часть движения, производимого падающим светом. И опыт показывает, что, действительно, нет ни одного полированного тела, отражение от которого не следует этому правилу.
В нашем доказательстве надо в особенности подчеркнуть, что оно не требует, чтобы отражающая поверхность рассматривалась как совершенно ровная плоскость, как то предполагали все те, которые старались объяснить явления отражения; эта поверхность должна быть только настолько ровной, насколько это возможно при образовании ее частицами материи отражающего тела, помещенными одна около другой. Эти частицы больше частиц эфирной материи, как будет ясно из того, что мы скажем при рассмотрении прозрачности и непрозрачности тел. Действительно, так как поверхность, таким образом, будет состоять из расположенных рядом частиц, а эфирные частицы будут сверху и они будут меньше, то ясно, что нельзя доказать равенства углов падения и отражения сходством с тем, что происходит с мячом, брошенным в стену, – сходством, которым всегда пользовались.
Между тем по нашему способу дело объясняется просто. Так как малость частиц, например ртути, такова, что на самой маленькой данной видимой поверхности их нужно представить себе миллионы, то, если эти частицы расположены наподобие кучи песку, которую разровняли настолько, насколько это можно сделать, эта поверхность будет, по нашему мнению, такой же ровной, как полированное стекло; и хотя она всегда остается шероховатой относительно частиц эфира, но ясно, что центры всех отдельных сфер отражения, о которых мы говорили, находятся приблизительно в одной и той же ровной плоскости и что, таким образом, их общая касательная плоскость в достаточной степени соответствует тому, что требуется для получения света. А только это и требуется для доказательства по нашему способу равенства названных углов; остальное отражаемое отовсюду движение не может вызвать какого-либо противоположного действия.
Глава третья
О преломлении
Подобно тому, как явления отражения были объяснены волнами света, отраженного от поверхности гладких тел, подобно этому прозрачность и явления преломления мы объясним при помощи волн, распространяющихся внутри и через прозрачные тела, будь то твердые, как стекло, или жидкие, как вода, масла и т. п. Но чтобы гипотеза о прохождении волн внутри таких тел не казалась странной, я сначала покажу, что это прохождение можно представить себе даже несколькими способами.
Прежде всего, если бы эфирная материя вовсе и не проникала в прозрачные тела, сами частицы их могли бы последовательно сообщать друг другу движение волн, подобно частицам эфира, так как предполагается, что они, как и последние, обладают способностью быть упругими. Это легко представить себе для воды и других прозрачных жидкостей, так как они состоят из отдельных частиц. Но это может казаться более трудным для стекла и других прозрачных и твердых тел, так как их твердость, по-видимому, не позволяет им воспринимать движение иначе, как всей массой сразу. Однако это не обязательно так, ибо их твердость не такова, какой она нам кажется, и ибо вероятно, что тела эти состоят скорее из частиц, которые только расположены друг около друга и удерживаются вместе лишь некоторым давлением извне, со стороны другой материи, и неправильностью своих форм.
Несплошное расположение этих частиц видно, во-первых, из легкости, с какой проникает сквозь них вещество магнитных вихрей и вещество, которое обусловливает тяжесть. Кроме того, нельзя сказать, чтобы эти тела обладали строением, подобным строению губки или печеного кислого хлеба, так как жар огня заставляет их течь и меняет тем самым взаимное положение частиц. Следовательно, необходимо, чтобы тела эти, как сказано выше, были собраниями частиц, касающихся друг друга, но не составляющих сплошного твердого тела; а раз это так, то движение, получаемое этими частицами для продолжения волн света, вполне может производить свое действие без всякого ущерба для кажущейся нам твердости составного тела, только передаваясь от одних частиц к другим без того, чтобы они оставляли для этого свои места или изменяли свое взаимное положение.