Глаз и Солнце
Шрифт:
Эту разность нельзя было бы объяснить более удовлетворительно при предположении, что неточность лежит в третьем наблюдении на расстоянии 3995 мм от непрозрачного тела. Правда, измерения, вследствие большей ширины полос, должны были иметь меньшую точность; но, проделав их несколько раз, я заметил лишь изменения, не превосходившие трех или четырех сотых миллиметра. Кроме того, если предположить даже и при этом измерении ошибку в полмиллиметра (ошибка невозможная), то отсюда получилась бы разность всего лишь в 0,13 мм для точки, расположенной на 103 мм от непрозрачного тела. Таким образом, этот опыт вполне доказывает, что внешние полосы расположены на пути своего распространения по кривым линиям, выпуклость которых обращена наружу.
Я сделал много других наблюдений в том же роде, и все они подтверждают этот замечательный результат. Но только что приведенного опыта достаточно, чтобы поставить вне сомнения заметную кривизну траекторий, по которым распространяются внешние полосы.
18. Этот замечательный результат
19. Подобное явление трудно представить себе с точки зрения теории испускания, в которой, не вступая в противоречие с основной гипотезой, нельзя предполагать какой-нибудь зависимости между движениями различных световых молекул. Нужно было бы, значит, допустить, что это действие одних лучей на другие не является реальным, а только кажущимся. Другими словами, нужно допустить, что явление происходит исключительно в одном глазу, в котором последовательные удары световых молекул об оптический нерв увеличивают или уменьшают уже начавшиеся колебания, смотря по тому, препятствуют ли они или способствуют их движению. Точно таким же образом, если желают привести в движение тяжелый колокол, то недостаточно увеличивать число ударов, но нужно оставлять между ними некоторые соответствующие и правильные промежутки времени, определяемые продолжительностью колебаний колокола, чтобы удары действовали совместно с уже приобретенным движением.
Это остроумное объяснение, указанное сторонникам теории испускания самим господином Юнгом, представляет большие трудности, если сравнить с фактами выводы, которые из него следуют. Но как бы интересно это ни было, в разбор этого мы здесь не войдем, так как иначе выйдем из положенных нами пределов. Кроме того, новые явления дифракции, которыми мы сейчас займемся и которые нам кажутся решающими и находящимися в явном противоречии с теорией испускания, делают этот разбор до некоторой степени излишним.
20. Господин Юнг предположил, и я думал так же, как и он (прежде чем узнал то, что им было опубликовано по этому вопросу), что внешние полосы получаются от совместного действия лучей прямых и лучей, отраженных от края экрана; но если бы это было так, то острие бритвы, которое имеет очень малую поверхность отражения, должно было бы давать внешние полосы, значительно более слабые, чем тупая сторона бритвы, отражающая гораздо больше света. Но на самом деле не замечают никакой разницы в интенсивности даваемых разными краями бритвы полос, во всяком случае если не наблюдают их слишком близко от бритвы.
Если пропустить лучи светящейся точки через узкое отверстие, шириною, например, в полмиллиметра и произвольной длины и если
28
Я называю таким образом проекцию, получающуюся с помощью прямых линий, исходящих из светящейся точки и касательных к краям отверстия.
Предположим, что края очень тонкие, подобно двум остро наточенным лезвиям; это не влияет на явление, но это делает более очевидным то следствие, которое из него нужно вывести. Если бы только те из лучей, которые коснулись края лезвия, испытывали некоторый изгиб, то в тени распространялась бы лишь чрезвычайно малая часть пропущенного через отверстие света. Отклоненные лучи являли бы тогда только весьма слабое свечение, в середине которого резко выделялась бы образованная прямыми лучами блестящая проекция отверстия. Но, как мы только что сказали, при достаточном удалении микрометра и светящейся точки от экрана наблюдается вовсе не это; прошедший пучок распространяет свой свет с почти одинаковой силой по пространству, значительно более широкому, чем проекция отверстия. Мы предположили, что отверстие узко (что оно имеет только полмиллиметра в ширину), и сделали это, чтобы указать на опыт, который можно произвести в темной комнате в пять или шесть метров глубины. Но если светящаяся точка находится на бесконечном расстоянии, как звезда, то подобного рода расширение введенного пучка всегда можно получить с отверстием какой угодно ширины, удалившись от него на достаточное расстояние.
21. Из этих опытов следует, что световые лучи, если в их непосредственной близости находится экран, могут быть отклонены от их первоначального направления не только у самого края экрана, но и на весьма заметных от него расстояниях.
Проследим теперь за следствиями, вытекающими из этого положения в теории испускания. Если бы световые молекулы, проходя на заметных расстояниях от поверхности тел, были их действием отклонены от первоначального направления, то по этой теории необходимо предположить, что это действие или производится притягивающими или отталкивающими силами, исходящими из тел, сфера действия которых простирается на подобные же по величине расстояния, или же его нужно приписать маленьким атмосферам, такой же величины, как и сферы действия, и с другим, чем у окружающей среды, показателем преломления. Но из этих двух гипотез одинаково следует, что в приведенном нами опыте отклонение лучей зависело бы от формы, величины и природы краев отверстия, тогда как с помощью точных наблюдений можно убедиться в том, что эти обстоятельства никакого заметного влияния на явления не оказывают и что расширение световых пучков зависит исключительно от ширины отверстия. Таким образом, явления дифракции необъяснимы в теории испускания.
22. Ввиду того что это возражение мне кажется основным и решающим, я считаю нужным привести еще некоторые из опытов, подтверждающих принцип, на котором оно основано.
Я пропускал пучок света между двумя стальными пластинками, очень близкими друг к другу; их вертикальные края, во всю длину хорошо выправленные, были в одной половине острыми, а в другой закругленными, и были расположены таким образом, что закругленный край одной пластинки соответствовал острому краю другой и обратно. Отсюда следовало, что если в верхней половине отверстия острие находилось, например, справа, то в нижней части оно было слева. Следовательно, если бы разница в действии того и другого края отклоняла лучи в одну сторону хоть сколько-нибудь больше, чем в другую, то я заметил бы это в относительном положении верхних и нижних частей среднего блестящего промежутка и в особенности в положении сопровождающих его полос, которые должны были бы казаться сломанными в той своей части, которая соответствует точке, где верхнее острие внезапно закругляется и где начинается нижнее острие другой пластинки. Но внимательно и во всю длину рассматривая эти полосы, я не замечал никакой точки разрыва или изгиба; они были прямы и непрерывны, как если бы пластинки были расположены так, чтобы противолежащие части были на всем протяжении одной и той же формы.
За несколько лет до этого Малюс и господин Бертолле, производя опыты по дифракции с пластинками, состоящими из двух различных по составу частей, например, из слоновой кости и из металла, признали по положению полос, что дифрактивные действия различного рода веществ были одинаковы; и хотя наблюдения этих знаменитых ученых не могут иметь совершенно такую же точность, как наблюдения, которые получаются с помощью микрометра по новому, мною указанному, способу, все же они достаточны, чтобы показать, что если различие в природе вещества имеет какое-нибудь незамеченное влияние на отклонение лучей, то это влияние значительно слабее того, которого нужно ожидать вследствие большой разницы в преломляющей и отражающей способностях употребляемых веществ, если только приписывать отклонение света притягивающим или отталкивающим силам, действующим на световые молекулы.