Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если обе системы интерферирующих волн параллельны, то промежуток, который отделяет их соответствующие точки, должен оставаться одним и тем же на значительной части волновой поверхности, т. е. другими словами, полосы сделаются почти неопределенной ширины, [37] и следовательно, весьма значительное смещение волнового центра не принесет собой заметного изменения в степени согласованности или расхождения их колебаний. Вот почему в этом случае нет надобности пользоваться столь малым освещающим предметом для того, чтобы заметить результаты их взаимодействия.

37

Если цветные кольца, получающиеся при интерференции двух почти параллельных систем волн, показывают, как и полосы, и часто даже на весьма узком протяжении, попеременно темные и светлые полосы, то это зависит исключительно от того, что

воздушный слой, находящийся между двумя соприкасающимися стеклами, не имеет повсюду одной и той же толщины, а это меняет разность хода лучей, отраженных от первой и второй поверхности воздушного слоя и дающих взаимной интерференцией темные и блестящие кольца.

34. Теперь должно стать понятным, почему светлые лучи, хотя и оказывают всегда друг на друга некоторое действие, обнаруживают это влияние все же так редко и в таких исключительных случаях; для того чтобы сделать взаимодействие заметным, необходимо: во-первых, чтобы интерферирующие лучи исходили из одного общего источника; во-вторых, чтобы они не отличались в своем ходе более чем на некоторое весьма ограниченное число волн, даже в том случае, когда пользуются самым упрощенным светом; в-третьих, чтобы они не пересекались под слишком большим углом, так как иначе полосы сделаются столь узкими, что их не обнаружить самой сильной лупой; в-четвертых, чтобы в том случае, когда эти лучи не параллельны и образуют между собой заметный угол, освещающий предмет имел бы очень маленькие размеры и чтобы он был тем тоньше, чем больше этот угол.

Я счел необходимым изложить теорию интерференции с некоторыми деталями, так как она находит многочисленные применения при вычислении самых интересных законов оптики. Может быть, с первого взгляда покажется, что рассуждения, на которых эта теория покоится, – несмотря на то что они изложены мною весьма пространно, – несколько утонченного свойства и трудны для понимания; но если подумать немного, то станет ясно, что, в сущности, нет ничего проще, и легко будет освоиться с ее приложениями.

35. Для того чтобы окончательно установить основы, на которых покоится общая теория дифракции, мне остается только рассказать о принципе Гюйгенса, который, как мне кажется, строго выводится из волновой теории.

Этот принцип можно формулировать таким образом: колебания световой волны в каждой ее точке могут рассматриваться как результат сложения элементарных движений, которые посылают в эту точку в один и тот же момент времени, действуя изолированно, все отдельные части этой волны, взятой в каком-нибудь из ее предшествующих положений. [38]

38

Принцип Гюйгенса в той формулировке, которая ему была дана Френелем, еще не может считаться вполне строгим. Если точно следовать Френелю, то две вещи остаются необъясненными. Прежде всего остается неразъясненным, почему отсутствует так называемая «обратная» волна. Если взять какое-нибудь одно из положений, скажем, сферической волны, и каждую ее точку рассматривать как новый центр колебаний, то остается невыясненным, почему элементарные волны, бегущие назад к центру волны, не могут дать вторичной волны, бегущей по тому же направлению. Объяснения Френеля страдают некоторой неясностью. В свое время это слабое место теории Френеля привело к чрезвычайно интересной полемике между ним и Пуассоном. Второе слабое место теории заключается в том, что она, давая правильное значение для амплитуды или интенсивности беспрепятственно распространяющегося света, дает неправильное значение для его фазы, которое отличается по его теории от истинного на /2. Вполне строгая формулировка принципа Гюйгенса была дана лишь значительно позднее Кирхгофом. – Примеч. перев.

Колебания, которые производятся в какой-нибудь точке упругой жидкости многими возмущениями сразу, равны статической равнодействующей всех скоростей, которые в один и тот же момент получаются из различных центров колебаний, каково бы ни было их число, их относительное положение, природа и разница в моментах возмущения; это обстоятельство является следствием принципа независимости маленьких движений, который, будучи общим, приложим ко всем отдельным случаям. Я предположу, что все эти возмущения, число которых бесконечно, одного и того же рода, происходят одновременно, между собой смежны и расположены на одной и той же сферической плоскости или на одной и той же сферической поверхности. Я сделаю еще одно предположение о природе этих возмущений, а именно: что сообщенные молекулам скорости направлены все в одну и ту же сторону, перпендикулярно к сферической поверхности, и что они, кроме того, пропорциональны уплотнениям и находятся в таком соотношении, что молекулы не могут двигаться назад. Таким образом, мною будет восстановлена вторичная волна, которая получается из совокупности всех этих частичных возмущений. Значит, правильно будет сказать, что колебания световой волны в каждой из ее точек могут рассматриваться как результат сложения всех элементарных движений, которые в один и тот же момент в эту точку

посылаются от всех отдельных и самостоятельно действующих частей этой волны, рассматриваемой в каком-нибудь из ее прежних положений.

Из этого теоретического рассуждения, так же как и из всех других, следует, что если интенсивность начальной волны равномерна, то эта равномерность сохранится во время движения, если только ни одна часть волны не пресекается или не задерживается по отношению к смежным частям, так как равнодействующая элементарных движений, о которой я только что говорил, будет для всех точек одной и той же. Но если одна из частей волны задерживается непрозрачным поставленным на ее пути телом, то интенсивность в каждой точке будет меняться с расстоянием от края тени, и эти изменения будут особенно заметны вблизи от касательных к телу лучей. <…>

41. Существует еще множество других явлений дифракции; к ним относятся, например, многократные и окрашенные изображения, получаемые при отражении от испещренных бороздками поверхностей, или также изображения, которые бывают видны сквозь очень тонкую ткань; затем к ним относятся цветные кольца, которые получаются, если между глазом наблюдателя и светящейся точкой поместить очень тонкие нити или легкие атомы, собранные неправильной кучей; все они могут быть объяснены и строго вычислены с помощью только что нами изложенной теории. Описывать их здесь и показать, каким образом они являются новым подтверждением теории, было бы слишком долго.

Мы думаем, кроме того, что она в достаточной степени доказана многочисленными и разнообразными явлениями, о которых мы говорили, и мы закончим это извлечение из «Мемуара о дифракции» детальным описанием одного важного опыта господина Араго, который позволяет вычислить самые небольшие разности в преломляющей способности тел с точностью почти неопределенно большой.

42. Мы видели, что полосы, которые получаются с помощью двух очень узких щелей, оказываются всегда симметрично расположенными по отношению к плоскости, проведенной через светящуюся точку и через середину промежутка между двумя щелями, если только оба интерферирующие пучка света прошли предварительно через одну и ту же среду, например воздух, как это и происходит при обычном расположении прибора. Но дело будет обстоять иначе, если один из пучков пройдет только через воздух, а другой встретит на своем пути более сильно преломляющее тело, как, например, тонкую пластинку слюды или пленку дутого стекла; в этом случае полосы окажутся смещенными в сторону пучка, который прошел через прозрачную пластинку, а если последняя будет иметь хоть сколько-нибудь значительную толщину, то они выйдут даже из освещенного пространства и исчезнут. Этот важный опыт, выполнением которого мы обязаны господину Араго, может быть также произведен с помощью прибора с двумя зеркалами, если поместить тонкую пластинку на пути одного из пучков до или после отражения.

Посмотрим теперь, какие выводы можно сделать из этого замечательного факта с помощью принципа интерференции. Мы уже обратили внимание на то, что середина центральной полосы получается всегда от одновременного прибытия лучей, вышедших в один и тот же момент из светящейся точки; значит, при обычных обстоятельствах, когда они проходят через одну и ту же среду, для того чтобы они прибыли в одно и то же время к месту встречи, необходимо, чтобы они прошли совершенно равные пути. Но легко понять, что если они проходят через среду, в которой свет не распространяется с той же самой скоростью, то тот из двух пучков, который идет медленнее, придет в эту точку позднее, и что, следовательно, эта точка не может быть более серединой центральной полосы. Последняя по необходимости должна приблизиться ближе пучку, который шел медленнее, чтобы меньшая длина пути компенсировала бы запаздывание, испытываемое лучом в пути. Наоборот, если полосы оказываются отклоненными направо или налево, то отсюда следует заключить, что пучок, в сторону которого полосы подвинулись, запаздывает в своем ходе. Таким образом, естественным следствием только что приведенного нами опыта господина Араго будет то, что свет распространяется быстрее в воздухе, чем в слюде или в стекле и вообще в других плотных телах, более сильно преломляющих, чем воздух, – результат, диаметрально противоположный объяснению, данному для преломления Ньютоном, предполагавшим, что световые молекулы сильно притягиваются плотными телами, так как из этого объяснения вытекало бы, что скорость света в этих телах больше, чем в средах менее плотных.

43. Этот опыт дает возможность сравнить скорость распространения света в разных средах. В самом деле, предположим, что толщина тонкой стеклянной пластинки была очень точно измерена с помощью сферометра и что смещение полос было измерено с помощью микрометра; так как известно, что до того, как пластинка была вставлена, пройденные пути были равны для середины центральной полосы, то можно вычислением определить, насколько они отличаются по длине друг от друга при новом положении полосы. Эта разность будет запаздыванием, которое испытывает свет в стеклянной пластинке, толщина которой известна; прибавив эту толщину к найденной разности, мы получим тот небольшой путь, который другой пучок прошел в воздухе за то же время, как первый проходил стеклянную пластинку; этот путь, сравненный с толщиной стеклянной пластинки, даст отношение скорости света в воздухе к скорости света в стекле.

Поделиться:
Популярные книги

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Николай I Освободитель. Книга 5

Савинков Андрей Николаевич
5. Николай I
Фантастика:
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 5

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол