Готовые дидактические материалы для тренировки устного счета: теорема Виета. 600 примеров

на главную - закладки

Жанры

Поделиться:

Готовые дидактические материалы для тренировки устного счета: теорема Виета. 600 примеров

Шрифт:

Предисловие

Теорема Виета, сформулированная французским математиком Франсуа Виетом, дает возможность в отдельных случаях (для целых и, иногда, для дробных значений корней) быстро находить решения квадратных уравнений, не прибегая к вычислениям с использованием дискриминанта. В школьной алгебре теорема Виета (формула Виета) играет такую же ведущую роль, как и теорема Пифагора в геометрии, однако учебно-методических материалов для отработки навыков поиска корней по формуле Виета имеется крайне мало.

Данное пособие призвано хотя бы частично устранить этот дефицит и содержит 600 готовых примеров квадратных уравнений с целыми корнями, а также ответы на эти примеры для проверки и самоконтроля.

При использовании

в классно-урочной форме работы учитель может использовать текст пособия в качестве готового раздаточного материала, а после выполнения работы учащимися произвести проверку по имеющимся готовым ответам.

При использовании пособия для самостоятельной подготовки вы можете использовать ответы для самопроверки после решения выбранных примеров.

Ответы записаны в форме разложения квадратного уравнения на множители; если требуется получить значения самих корней, то нужно константные слагаемые в скобках брать с противоположными знаками.

Примечание. При использовании формулы Виета дискриминант квадратного уравнения должен быть неотрицательным. В случае, если дискриминант равен нулю, считается, что данное уравнение имеет два равных друг другу корня.

Теорема Виета (краткие теоретические сведения)

Формулировка теоремы Виета:

Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Таким образом, если уравнение x2 + bx + c = 0 имеет два корня: x1 и x2, то справедливы следующие два равенства:

Согласно этим равенствам, для получения решения квадратного уравнения необходимо подбором найти два числа, сумма которых равна коэффициенту при x, взятому с обратным знаком, а произведение равно свободному члену. Следует заметить, что при этом исходное квадратное уравнение должно быть приведено к виду, когда коэффициент a при x2 равен единице.

Доказательство теоремы Виета

Докажем теорему Виета.

Формулы для вычисления корней квадратного уравнения (рассматривается ситуация, когда дискриминант D положителен; уравнение с нулевым дискриминантом можно считать частным случаем):

Вычислим сумму этих корней:

Раскрыв скобки и сократив слагаемые, получаем:

.

Вычислим

произведение корней:

Применив в числителе формулу разности квадратов, получаем:

Подставляем известную нам формулу для вычисления дискриминанта:

Получаем:

Таким образом, оба равенства теоремы Виета доказаны.

Обратная теорема Виета

Формулировка обратной теоремы Виета:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x2 + bx + c = 0.

Доказательство обратной теоремы Виета читатели могут произвести самостоятельно.

Задания для самостоятельного решения

1. x2 – 28x + 171 = 0

2. x2 + 8x – 180 = 0

3. x2 – 10x – 75 = 0

4. x2 + 22x + 72 = 0

5. x2 + 0x – 289 = 0

6. x2 – 6x – 160 = 0

7. x2 + 1x – 30 = 0

8. x2 – 2x – 120 = 0

9. x2 – 14x + 40 = 0

10. x2 + 7x – 18 = 0

Комментарии:
Популярные книги

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Эрсус. Фаворит Смерти

Павлов Вел
2. Стезя Эрсуса
Фантастика:
фэнтези
5.00
рейтинг книги
Эрсус. Фаворит Смерти

Тринадцатый III

NikL
3. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый III

Наследник хочет в отпуск

Тарс Элиан
5. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник хочет в отпуск

Личный аптекарь императора

Карелин Сергей Витальевич
1. Личный аптекарь императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Личный аптекарь императора

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Приручитель женщин-монстров. Том 14

Дорничев Дмитрий
14. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Приручитель женщин-монстров. Том 14

В лапах зверя

Зайцева Мария
1. Звериные повадки Симоновых
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
В лапах зверя

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Господин следователь. Книга 4

Шалашов Евгений Васильевич
4. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 4