Хаос. Создание новой науки
Шрифт:
Либхабер, как и другие экспериментаторы, использовал для записи показаний датчиков простой графопостроитель. В состоянии равновесия, после первого разветвления, температура в любой точке оставалась более или менее постоянной, и перо чертило прямую линию. С увеличением нагрева обнаруживалась большая нестабильность. В каждом витке появлялся узел, который равномерно двигался взад и вперед, и такое его перемещение выявляло колебания температуры между двумя значениями, верхним и нижним. В этот период перо графопостроителя чертило на бумаге волнистую линию.
По одной непрерывно меняющейся и дрожащей от помех линии температур выяснить точное время появления новых разветвлений или установить их природу невозможно. График образует «пики» и «долины», которые кажутся столь же случайными, как и кривые продаж переживающего лихорадку
Рис. 7.2. Два способа наблюдения разветвлений. Когда в опыте, подобном тому, который поставил Либхабер, наблюдаются устойчивые колебания, их образ в фазовом пространстве представляет собой петлю, повторяющую саму себя с регулярными интервалами (вверху слева). Тогда экспериментатор видит спектральную диаграмму с высоким пиком данной единичной частоты (внизу слева). После удваивающего периоды разветвления система дважды образует петлю, прежде чем повторит сама себя (вверху в центре), и ученый видит уже новый ритм, равный половине частоты или удвоенному прежнему периоду (внизу в центре). Новые удвоения периодов наделяют спектральную диаграмму все большим и большим числом пиков (справа).
Период первой появившейся волны составлял около двух секунд, а следующее разветвление произошло уже с некоторыми изменениями. Виток в жидкости продолжал колебаться, температура, показываемая болометром, росла и падала с определенной цикличностью, но на одной из ветвей температура стала чуть выше, чем раньше, а на другой — чуть ниже. Фактически значение температуры расщепилось, образовав два различных максимума и минимума. Вычерчиваемая графопостроителем линия, весьма сложная для интерпретации, фиксировала как бы одно колебание на другом, своего рода «метаколебание». На спектральной диаграмме описанный эффект выглядел более четко: прежняя частота еще в значительной мере присутствовала, хотя температура, как и раньше, поднималась каждые две секунды. Однако теперь новая частота составляла ровно половину прежней, поскольку в системе проявился некий повторяющийся каждые четыре секунды компонент. Затем, по мере появления разветвлений, стали возникать новые частоты, вдвое меньше предыдущих. Диаграмма с четвертыми, восьмыми и шестнадцатыми долями скоро уже напоминала забор, в котором чередовались высокие и низкие рейки (т. е. пики).
Человек, ищущий в беспорядочной информации скрытые формы, должен проделать один и тот же опыт десятки и сотни раз, прежде чем начнут проясняться закономерности поведения исследуемой системы. Когда наши экспериментаторы, ученый и инженер, постепенно увеличивали температуру и система переходила от одного состояния равновесия к другому, порой наблюдались весьма специфичные явления. Иногда появлялись промежуточные частоты, плавно скользившие по спектральной диаграмме и вскоре исчезавшие. Временами изменялась наблюдаемая геометрия, и вместо двух появлялось три валика жидкости. И как можно было угадать, что же на самом деле происходит внутри маленькой стальной ячейки?
Знай тогда Либхабер об открытии Файгенбаумом всеобщности, он бы точно представлял, что такое разветвления и где их искать. К 1979 г. все больше математиков и сведущих в математике физиков обращали внимание на новую теорию Файгенбаума, но в массе своей ученые, знакомые с трудностями изучения реальных
«Никто и не помышлял, что действительно нужное нам основное движение в такой системе упрощается и описывается схемами», — признался Пьер Хоэнберг из лабораторий «AT & Т Bell» в Нью-Джерси. Он входил в число тех немногих физиков, которые доверяли как новой теории, так и связанным с ней экспериментам. «Файгенбаум, может быть, и мечтал о таком, но не высказывал своих чаяний вслух. Его работа была посвящена схемам. Почему они должны интересовать физиков? Забава, не более того… Пока шли игры со схемами, все казалось слишком далеким от того, что мы действительно стремились понять. Но когда теория подтвердилась на опыте, она нас не на шутку взволновала. Самое удивительное заключается в том, что, исследуя по-настоящему интересныесистемы, можно во всех деталях понять их поведение при помощи модели с малым числом степеней свободы».
В конце концов именно Хоэнберг познакомил экспериментатора и теоретика. Летом 1979 г. он проводил семинар в Аспене, где побывал Либхабер. (Четырьмя годами ранее, на такой же летней встрече, Файгенбаум слушал доклад Стива Смэйла о числе — одном-единственном числе, которое словно бы «взорвалось», когда математик наблюдал переход к хаосу в определенном уравнении.) Либхабер описал свои опыты с жидким гелием, а Хоэнберг сделал заметки. По пути домой он заглянул в Нью-Мексико повидаться с Файгенбаумом. Вскоре после этого Файгенбаум посетил Либхабера в Париже, и тот с гордостью продемонстрировал свою миниатюрную ячейку, дав Файгенбауму возможность разъяснить последний вариант его теории. Потом они вместе бродили по Парижу в поисках хорошей кофейни, и Либхабер позже вспоминал, как был удивлен, увидев столь молодого и, по его собственному выражению, живогоученого-теоретика.
Переход от схем к реальным потокам жидкости казался настолько значительным достижением, что даже самые щепетильные и недоверчивые ученые восприняли его как чудо. Каким образом природа смогла сочетать крайнюю сложность с предельной простотой, никто не понимал. Джерри Голлаб предложил «рассматривать это не как обычную связь между теорией и опытом, а как некое чудо». И это чудо в течение нескольких лет повторялось снова и снова в огромном бестиарии лабораторных систем: в увеличенных в размерах ячейках с водой и ртутью, электронных осцилляторах, лазерах и даже в химических реакциях. Теоретики, восприняв методы Файгенбаума, обнаружили и иные математические пути к хаосу, родственные удвоению периодов, — прерывистость и квазипериодичность, которые тоже доказали свою универсальность как в теории, так и в опытах.
Открытия ученых стимулировали компьютерные эксперименты. Физики обнаружили, что вычислительные машины воспроизводят изображения, аналогичные тем, что наблюдаются в реальных опытах, только в миллионы раз быстрее и куда надежнее. Многим более убедительной, нежели результаты Либхабера, казалась жидкостная модель Вальтера Францечини из Университета Модены (Италия) — система из пяти дифференциальных уравнений, генерировавшая аттракторы и удвоение периодов. Хотя Францечини ничего не знал о Файгенбауме, его сложная модель с большим числом измерений выдавала те же постоянные, которые нашел Файгенбаум с помощью своих одномерных схем. В 1980 г. группа европейских ученых выработала довольно убедительное математическое объяснение феномена: диссипация «опорожняет» сложную систему, устраняя множество противодействующих движений и фактически преобразуя поведение множества измерений в одно.