Хаос. Создание новой науки
Шрифт:
Шаффер использует странные аттракторы для исследования эпидемиологии детских болезней, таких как корь и ветряная оспа. Собрав данные сначала по Нью-Йорку и Балтимору, потом Абердину, Шотландии, по всей Англии и Уэльсу, он построил динамическую модель, напоминающую маятник, который одновременно подвергается воздействию двух противодействующих сил. Считалось, что каждый год число заболевших увеличивается из-за распространения инфекции среди детей, начинающих учебный год, но рост его сдерживается естественной сопротивляемостью организма. Модель Шаффера предсказывает совершенно иную динамику распространения данных заболеваний. Ветряной оспе присуща периодичность. Корь, согласно модели, должна распространяться хаотично. Оказалось, что реальность точно соответствует прогнозу Шаффера. Эпидемиологу, который придерживался
Шаффер вычислил показатели Ляпунова и построил сечения Пуанкаре. «Будет лучше, — говорит он, — если вы посмотрите на изображения, откуда буквально выскакивает сделанный мной вывод, и промолвите: „Господи, ведь это одно и то же!“» И хотя аттрактор является хаотичным, в силу детерминистской природы самой модели возможна некоторая предсказуемость. Если в течение года заболеваемость корью была высока, последует ее сильное снижение. Если уровень заболеваемости был средним, можно ожидать лишь незначительного его изменения. Труднее всего предсказать, на какой год выпадет максимальное число заболевших. Модель Шаффера позволила прогнозировать, какое влияние окажет на динамику заболеваемости массовая вакцинация, чего не могла предугадать традиционная эпидемиология.
Научные коллективы и работающие в одиночку специалисты по-разному воспринимают идеи хаоса, и в каждом случае на то есть свои особые причины. Для Шаффера, как, впрочем, и многих других, переход от традиционной науки к хаосу оказался неожиданным. Именно таким, как он, был адресован пламенный призыв Роберта Мэя в 1975 г. Между тем Шаффер, прочитав статью Мэя, не заинтересовался ею, решив, что математические идеи слишком далеки от нужд практической экологии. А ведь именно Шаффер, хорошо ориентирующийся в экологии, мог по достоинству оценить воззрения Мэя. Однако его взгляду предстали одномерные модели, и он подумал: «Какое отношение могут они иметь к непрерывно меняющимся сложным системам?» Когда коллега посоветовал ему познакомиться с работой Лоренца, Шаффер, нацарапав выходные данные статьи на клочке бумаги, благополучно забыл о ней.
Годы спустя Шаффер жил в пустыне, окружающей город Тусон, что в штате Аризона. На лето он перебирался севернее, в горы Санта-Каталина. Здесь, в царстве колючего кустарника, жара переносится легче, земля не так пышет жаром, как на пустынных просторах. В июне и июле, между буйством весенних красок и сезоном летних дождей, Шаффер и его аспиранты наблюдали за пчелами и цветами чапараля. Исследования этой экологической системы представлялись несложными, несмотря на ежегодно происходящие в ней метаморфозы. Шаффер подсчитывал число пчел на каждом стебле, с помощью пипетки замерял количество пыльцы на цветах и анализировал собранные данные с помощью математики. Шмели соперничали с медоносными пчелами, а последние, в свою очередь, с пчелами-плотниками. Ученый создал весьма убедительную модель, объяснявшую колебания в их популяциях.
К 1980 г. он понял: что-то идет не так, разрушая его модель. Выяснилось, что ключевая роль принадлежала виду, который не был учтен при построении модели, — муравьям. Некоторые коллеги ученого подозревали, что все дело в необычной зимней погоде, другие — в летней или прочих неучтенных факторах. Шаффер принялся обдумывать, как бы учесть дополнительные параметры. Все же ученый казался удрученным. Его аспиранты утверждали, что тем летом он выглядел мрачным и напряженно работал.
Потом все изменилось. Случайно обнаружив препринт статьи о химическом хаосе в сложном лабораторном эксперименте, Шаффер почувствовал, что ее авторы столкнулись с тем же явлением, что и он сам. Выявить и описать десятки продуктов реакции в пробирке оказалось так же невозможно, как и учесть все многообразие видов в горах Аризоны. Все же химикам удалось достичь успеха там, где эколог потерпел крах. Шаффер принялся читать о реконструкции фазового пространства, познакомился наконец с работами Лоренца, Йорка и других исследователей. Университет Аризоны выделил средства на серию лекций «Порядок внутри хаоса».
«Внезапно я понял, что это судьба», — вспоминал позже Шаффер, которому предстоял год академического отпуска. Он отозвал свою заявку из Национального научного фонда, куда обращался с просьбой о финансировании, и начал все снова. Высоко в горах Аризоны популяция муравьев росла и уменьшалась, пчелы с жужжанием кружились в воздухе, облака медленно плыли по небу, а Шаффер постигал новую науку. Он больше не мог работать как прежде.
* Компьютерная программа, воспроизводящая систему Мандельбро, нуждается в разъяснении нескольких существенных деталей. Главный ее механизм состоит в том, что выбирается начальное комплексное число и к нему применяется арифметическое правило. Для рассматриваемой ниже системы правило таково: z– > z^2 + с, где zначинается с нуля, а спредставляет собой комплексное число, соответствующее тестируемой точке. Итак, возьмем нуль, умножим его на самого себя, прибавим начальное число; взяв результат (начальное число), умножим его на самое себя и прибавим начальное число; возьмем новый результат, опять умножим его на самого себя и прибавим начальное число.Арифметика с комплексными числами ведет нас прямо вперед. Комплексное число состоит из двух частей, например: 2 + Зi (местоположение точки: 2 к востоку и 3 к северу на комплексной плоскости). Чтобы сложить два комплексных числа, надо лишь сложить действительные части для получения новой действительной части и мнимые — для получения новой мнимой части:
Чтобы перемножить два комплексных числа, нужно умножить каждую часть одного из них на каждую часть другого (но правилам перемножения двучленов) и сложить получившиеся четыре результата. Поскольку і, умноженное на самое себя, дает -1, то в силу первоначального определения мнимых чисел один член результата переходит в другой:
Чтобы прекратить движение по петле, программа должна отслеживать текущий итог. Если результат стремится к бесконечности, все более и более удаляясь от центра плоскости, выбранная точка не принадлежит к системе. В том случае, когда итог превышает 2 или становится меньше -2 либо в действительной, либо в мнимой части, результат, бесспорно, стремится к бесконечности и работа программы может продолжаться. Коль скоро она выполняет одни и те же вычисления много раз, не превышая2, точка является частью системы. (Число раз зависит от степени увеличения. Для масштаба, доступного персональному компьютеру, ста или двухсот раз часто бывает достаточно, а тысяча повторений дает полную гарантию.) Программа должна повторить данный процесс для каждой из тысяч точек решетки. Масштаб можно увеличить. Затем программа должна показать полученный результат. Точки, входящие в систему, могут быть обозначены черным цветом, а не принадлежащие к ней — белым. Для получения более живого изображения белый цвет можно заменить оттенками других цветов. В частности, если итерация прекращается после десяти повторений, программа должна выдать красную точку, после двадцати — оранжевую, после сорока — желтую и т. д. Выбор цветов и момент остановки расчета точек программист может выбрать сам. Цвета надлежащим образом обозначают контуры, оставшиеся за пределами системы.