Чтение онлайн

на главную - закладки

Жанры

И тут появился изобретатель
Шрифт:

— Давайте поставим две трубы, — сказал начальник цеха. — Пока одна работает, другую успеем отремонтировать.

И тут появился изобретатель.

— Разве это дело: все время заниматься ремонтом?! — воскликнул он. — Есть у меня подходящая идея… Гарантирую: машина будет работать вечно!

Потребовалось всего пять минут, чтобы осуществить идею изобретения. Что предложил изобретатель?

Итак,

одно вещество (стальные шарики) механически взаимодействует с другим веществом (стенками трубы). Следовательно, дан ненужный (даже вредный) веполь. На заводе его пытались разрушить, вводя третье вещество — разные прокладки, прослойки. Это теоретически неправильно: для хорошего решения надо, чтобы третье вещество было (оно защитит стенку) и его не было (тогда оно не будет разрушаться). Этим веществом могут стать те же шарики. Только неподвижные, остановившиеся у стенки трубы. Если изгиб трубы изнутри покрыть шариками, стенки перестанут разрушаться. Летящие шарики могут выбить один или несколько шариков из защитного слоя, но его место тут же заполнится одним из мчащихся по трубе шариков.

На этом хитрость заканчивается. Теперь нужна физика: как получить защитный слой шариков? Физика простая, ее проходят в седьмом классе: надо использовать магниты. Там, где труба изгибается, поставим снаружи магнит. Внутри к трубе сразу прилипнет слой шариков. Задача решена! Интересно отметить, что дробеметные аппараты для упрочнения деталей широко применялись по крайней мере за четверть века до появления авторского свидетельства № 261 207 на магнитную защиту. Все видели задачу, но решали ее иначе — устанавливали прокладки, делали стенки аппарата из более прочной стали…

Задача 26. Сверхточный кран

Заведующий химической лабораторией пригласил изобретателя и сказал:

— Нам надо управлять потоком газа, который по этой металлической трубе идет из одного сосуда в другой. У нас есть краны с притертой стеклянной пробкой, но они не обеспечивают требуемой точности: трудно регулировать величину отверстия, по которому перетекает газ.

— Конечно, — сказал изобретатель, — вы бы еще самоварный кран поставили.

Химик сделал вид, что не расслышал замечания.

— Можно, — продолжал он, — поставить резиновую трубку и зажим. Но и это не дает нужной точности.

— Зажимы, — усмехнулся изобретатель. — Бельевые прищепки…

Тут химик не выдержал:

— Сотни лет так работаем. Попробуйте-ка придумать кран не сложнее «прищепки» или «самоварного крана», а по точности раз в десять лучше.

— Капелька хитрости плюс физика девятого класса. Надо сделать так…

Что предложил изобретатель?

Для нас с вами кран — типичная вепольная система: корпус В1, поворачиваемая деталь В2 и поле механических сил Пмех. Под действием поля Пмехдеталь В2 перемещается относительно корпуса В1, благодаря чему зазор между В1 и В2

становится шире или, наоборот, сужается. Веполь уже есть, но работает он неважно. Следовательно, придется заменить веполь, использовать другое поле. Какое именно — электрическое, магнитное, электромагнитное, тепловое?

Здесь хитрости кончаются и начинается физика. В учебнике физики для девятого класса есть целая глава о тепловом расширении. А нам как раз и надо менять ширину зазора между В1 и В2.

Откроем учебник. Вот и описание опыта: сквозь нагретое кольцо проходит шар, который до этого не проходил. Рисунок кольца и шара — готовая модель нашего крана.

Сравним полученное решение с авторским свидетельством № 179 489: «Устройство для дозировки малых количеств газа, состоящее из корпуса, и стержня, плотно пригнанного к внутренней поверхности корпуса, отличающееся тем, что, с целью дозировки малых количеств газа с высокой степенью точности, корпус изготовлен из материала, имеющего большой коэффициент теплового расширения, а стержень — из материала, коэффициент теплового расширения которого значительно меньше, чем у материала корпуса».

Наверное, вы уже поняли, как работает такой кран. При нагревании корпус расширяется сильно, а стержень — слабо. Возникает зазор. Чем сильнее нагрет корпус, тем больше зазор. Смысл изобретения, как видите, в том, что вместо движения больших деталей, «железок», предложено использовать растяжение и сжатие кристаллической решетки.

Кстати, растягивать и сжимать кристаллическую решетку можно не только тепловым полем. «Некоторые кристаллы, например кварц, сегнетова соль и турмалин, в электрическом поле меняют свои размеры: в зависимости от направления поля они сжимаются или растягиваются», — это из учебника физики для десятого класса. Называется это явление обратным пьезоэффектом. Ну а то, что обратный пьезоэффект можно использовать для создания микрокрана, вы и сами уже догадались.

Есть еще один похожий эффект — магнитострикция: магнитное поле растягивает (или сжимает) некоторые металлы. Тоже подходящий ответ для задачи о кране.

Как решать задачи, которых еще нет

Прием решения многих задач: «Переход с макроуровня на микроуровень».

Вот, например, авторское свидетельство № 438 327: «Вибрационный гироскоп с массами, приводимыми в колебательное движение внешними переменными или электрическими полями, отличающийся тем, что в качестве колеблющихся масс применены электроны или заряженные ионы». В обычных вибрационных гироскопах колеблются массивные грузы — «гири», установленные на стержнях. Идея изобретения в том, что в качестве «гирь» взяты микрочастицы — электроны или ионы. Такой гироскоп намного компактнее, точнее и надежнее.

Когда в предыдущей главе вы читали о четырех этапах развития технических систем, у вас, возможно, возник вопрос: ну, хорошо, системы проходят четыре этапа, а что происходит с системами дальше? А дальше две возможности. Об одной я уже говорил: система, достигнув пределов развития, объединяется с другой системой и образует новую, более сложную систему — развитие продолжается. Например, велосипед, объединившись с двигателем внутреннего сгорания, превратился в мотоцикл. Возникла новая система, развитие продолжалось.

Поделиться:
Популярные книги

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Дорогой Солнца

Котов Сергей
1. Дорогой Солнца
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
Дорогой Солнца

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Газлайтер. Том 6

Володин Григорий
6. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 6

Дочь опальной герцогини

Лин Айлин
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дочь опальной герцогини

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса