Идиот или гений? Как работает и на что способен искусственный интеллект
Шрифт:
Минский и Пейперт отметили, что если перцептрон усовершенствовать, добавив дополнительный “слой” искусственных нейронов, то количество типов задач, которые сможет решать устройство, значительно возрастет [34] . Перцептрон с таким дополнительным слоем называется многослойной нейронной сетью. Такие сети составляют основу значительной части современного ИИ, и я подробно опишу их в следующей главе. Пока же я отмечу, что в то время, когда Минский и Пейперт писали свою книгу, многослойные нейронные сети еще не
34
Выражаясь техническим языком, любую булеву функцию можно вычислить с помощью полностью подключенной многослойной сети с линейными пороговыми значениями и одним внутренним (“скрытым”) слоем.
Ограниченность простых перцептронов, установленная Минским и Пейпертом, была уже известна людям, работавшим в этой сфере [35] . Сам Фрэнк Розенблатт много работал с многослойными перцептронами и признавал, что их сложно обучать [36] . Но последний гвоздь в крышку гроба перцептронов вогнала не математика Минского и Пейперта, а их рассуждения о многослойных нейронных сетях:
[Перцептрон] обладает многими свойствами, привлекающими внимание: линейность, интригующая способность к обучению, очевидная простота перцептрона как разновидности устройства для параллельных вычислений. Нет никаких оснований предполагать, что любое из этих достоинств распространяется на многослойный вариант. Тем не менее мы считаем важной исследовательской задачей разъяснить (или отвергнуть) наше интуитивное заключение о том, что обсуждаемое расширение бесплодно [37] .
35
Olazaran, “Sociological Study of the Official History of the Perceptrons Controversy”.
36
G. Nagy, “Neural Networks – Then and Now”, IEEE Transactions on Neural Networks 2, no. 2 (1991): 316–318.
37
Minsky and Papert, “Perceptrons”, 231–232. (Пер. с англ. Г. Гимельфарба и В. Шарыпанова.)
Ой-ой! Сегодня последнее предложение этого отрывка, возможно, сочли бы “пассивно-агрессивным”. Такие негативные спекуляции отчасти объясняют, почему в конце 1960-х финансирование исследований нейронных сетей прекратилось, хотя государство продолжало вливать немалые деньги в символический ИИ. В 1971 году Фрэнк Розенблатт утонул в возрасте сорока трех лет. Лишившись главного идеолога и большей части государственного финансирования, исследования перцептронов и других систем
Зима ИИ
Тем временем поборники символического ИИ писали заявки на гранты, обещая скорые прорывы в таких областях, как понимание речи и языка, построение логических выводов на основе здравого смысла, навигация роботов и беспилотные автомобили. К середине 1970-х годов были успешно развернуты некоторые узкие экспертные системы, но обещанных прорывов общего характера так и не произошло.
Это не укрылось от внимания финансирующих организаций. Британский Совет по научным исследованиям и Министерство обороны США подготовили отчеты, в которых дали крайне отрицательную оценку прогрессу и перспективам исследований ИИ. В частности, в британском отчете отмечалось, что некоторые надежды вселяет продвижение в области специализированных экспертных систем – “программ, написанных для работы в узких сферах, где программирование полностью принимает во внимание человеческий опыт и человеческие знания в соответствующей области”, – но подчеркивалось, что текущие результаты работы “над программами общего назначения, ориентированными на копирование механизма решения широкого спектра задач с человеческого [мозга], удручают. Вожделенная долгосрочная цель исследований в сфере ИИ кажется все такой же далекой” [38] . После этого отчета государственное финансирование исследований ИИ в Великобритании резко сократилось, Министерство обороны США тоже существенно урезало бюджеты базовых исследований ИИ.
38
J. Lighthill, “Artificial Intelligence: A General Survey”, in Artificial Intelligence: A Paper Symposium (London: Science Research Council, 1973).
Это стало одним из первых примеров повторяющегося цикла взлетов и падений ИИ. Как правило, двухфазный цикл развивается следующим образом. Фаза 1: Новые идеи рождают большой оптимизм в научном сообществе. Появляются прогнозы о грядущих прорывах в сфере ИИ, которые часто приводят к шумихе в прессе. Государственные структуры и частные инвесторы выделяют средства на проведение научных исследований и организацию коммерческих стартапов. Фаза 2: Обещанные прорывы не происходят или оказываются гораздо скромнее, чем предполагалось. Приток средств от государственных и частных инвесторов сокращается. Стартапы сворачивают деятельность, исследования ИИ замедляются. Такая схема прекрасно знакома ИИ-сообществу: за “весной ИИ” следуют раздутые обещания и шумиха в прессе, а затем наступает “зима ИИ”. В той или иной степени это происходит циклично с периодичностью от пяти до десяти лет. Когда в 1990 году я окончила университет, сфера ИИ переживала одну из зим и заработала такую плохую репутацию, что мне даже посоветовали не упоминать об искусственном интеллекте в своем резюме.
Конец ознакомительного фрагмента.