Чтение онлайн

на главную - закладки

Жанры

Игра в имитацию
Шрифт:

К сожалению, на деле все обстояло не так просто. Рассел стремился определить множество с одним элементом при помощи идеи равенства, не используя при этом понятие вычисления. Тогда он смог бы определить число «один», как «множество всех множеств с одним элементом». Но уже в 1901 году Рассел заметил логические противоречия, возникающие при попытке использовать понятие «множества всех множеств».

Сложность заключалась в возможном возникновении ссылающихся на самих себя, внутренне противоречивых утверждений, например: «Это утверждение ложно». Подобная проблема возникла в теории множеств, которую разработал немецкий математик Георг Кантор. Рассел заметил, что аналогичный парадоксу Кантора возникает и в его теории типов. Тогда он выделил два вида «классов»: множества, которые не содержат сами себя в качестве подмножества, и множества, которые содержат сами себя в качестве подмножества. С точки зрения Рассела, «в обычном понимании класс не является членом самого

себя; человечество, например, не является человеком». Но множество абстрактных понятий или множество всех множеств могут иметь подобное свойство. Получившемуся парадоксу Рассел попытался дать следующее объяснение:

Предположим, что существует множество всех собственных множеств, которые не содержат себя в качестве подмножества. Представим одно из таких множеств: является ли оно подмножеством самого себя? В случае, если оно является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно не является подмножеством себя. В случае, если оно не является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно является подмножеством себя. Таким образом, в каждом из двух предположений — что оно является и не является подмножеством самого себя — возникает противоречие относительно другого предположения. В этом и состоит суть парадокса.

Такой парадокс не поддавался решению при попытках понять его истинный смысл. Философы могли обсуждать парадокс сколько им было угодно, но все их обсуждения не относились к делу, которым занимались Фреге и Рассел. Вся эта теория была создана с целью вывести арифметические законы из наиболее простых логических допущений при помощи автоматического, не допускающего двойного толкования, деперсонализированного метода. Независимо от истинного смысла парадокса Рассела, он представлял собой лишь последовательность символов, которые, согласно установленным правилам игры, неумолимо ведут к внутреннему противоречию всей последовательности. В этом и заключалось главное бедствие. В любой чисто логической системе не существовало возможности для какого бы то ни было несоответствия. Если бы в результате логических рассуждений было выведено утверждение «2 + 2 = 5», за ним последовал бы вывод, что «4 = 5» и «0 = 1», а значит любое число было бы равно нулю и любое утверждение было бы тождественно «0 = 0» и таким образом являлось бы истинным. Поэтому в условиях подобной игры математика должна была представлять собой нечто, полностью лишенное внутренних противоречий, иначе она теряла свой смысл.

Десять лет ушло на попытки Рассела и Альфреда Норта Уайтхеда устранить этот дефект. Существенная трудность заключалась в том, что внутренним противоречием обладала и попытка назвать любой набор объектов «множеством». Понятие требовало более точного определения. И хотя парадокс Рассела был не единственной проблемой, возникшей в теории типов, только ему была посвящена значительная часть совместной работы учёных «Principia Mathematica», в которой Рассел и Уайтхед стремились показать, что вся математика сводится к логике с помощью набора аксиом и нескольких основных понятий, то есть обосновать логицизм. Для этого была введена иерархия различных видов множеств, которые были названы «типами». Формальные объекты этой иерархии разделяются на типы: объекты, множества объектов, множества множеств, множества множеств множеств и так далее. В рамках разработанной теории типов теперь было невозможно сформулировать понятие «множества всех множеств». Между тем, такой подход значительно усложнил теорию, сделав её на порядок более сложной, чем система счисления, принципы которой она и должна была подтвердить. Оставалось неясным, являлась ли теория типов единственным полем для разработки идей о множествах и числах, пока к 1930 году не были разработаны альтернативные системы, автором одной из которых являлся фон Нейман.

На первый взгляд безобидное требование доказательства полноты и последовательности математики открыло для научного сообщество настоящий ящик Пандоры, полный проблем. В одном смысле, математические суждения казались верными, как ничто другое; в другом, они представлялись не больше чем символами на бумаге, которые при попытках объяснить их смысл приводили к непостижимым разумом парадоксам.

Как и в саду Зазеркалья путь к самой сути математики вел в чащу замысловатой специальной терминологии. Подобное отсутствие какой бы то ни было связи между математическими символами и миром физических объектов очаровывало пытливый ум Алана. В конце предисловия к своей работе «Введение в математическую философию» Б. Рассел написал: «Здесь, однако, с точки зрения дальнейших исследований, как и везде, метод более важен, чем результаты, а метод не может быть объяснен в достаточной мере в рамках этой книги. Остается надеяться, что некоторые читатели заинтересуются настолько, чтобы продолжить изучение метода, которым математическая логика помогает прояснить традиционные проблемы философии». Таким образом, можно считать, что книга выполнила свое истинное предназначение с точки зрения автора, поскольку Алан всерьёз заинтересовался проблемой теории типов, а в более широком смысле столкнулся с вопросом, который волновал прокуратора Иудеи Понтия Пилата: «Что есть истина?».

Кеннет

Харрисон был также знаком с некоторыми идеями Рассела, и они с Аланом могли провести несколько часов, обсуждая их. Однако, к неудовольствию Алана, его товарищ не мог не задаваться вопросом: «Но какая же польза от всего этого?». На что Алан, возможно, с радостным тоном в голосе отвечал, что, разумеется, никакой пользы в этом нет. И скорее всего, вскоре он нашел более увлечённых собеседников, поскольку осенью 1933 года он был приглашен на еженедельное вечернее заседание Клуба Моральных Наук, чтобы прочитать свою работу. Честь быть приглашенным на подобное заседание редко выпадала на долю кого-то из студентов, и уж тем более тех, кто не учился на факультете Моральных Наук, как раньше называли факультет философии и сопутствующих дисциплин в Кембридже. Подобная перспектива выступить перед лучшими специалистами в области философии могла вызвать некоторое беспокойство у Алана, тем не менее в письме к матери он сообщил об этом со своим привычным невозмутимым тоном:

26 ноября 1933 года

… мне предстоит представить свою работу на заседании Клуба Моральных Наук в эту пятницу. Работа некоторым образом связана с философией математики. Надеюсь, они узнают для себя много нового по этой теме.

В протоколе заседания Клуба Моральных Наук от 1 декабря 1933 года, в пятницу было отмечено:

Шестое заседание осеннего триместра было проведено в комнатах мистера Тьюринга в Кингз-Колледже. А.М. Тьюринг представил членам клуба свою работу под названием «Математика и логика». В ней он выдвинул свое предположение, что чисто логистическое представление математики не соответствует ее требованиям; и что математические суждения обладают множеством интерпретаций, и логистическое высказывание является лишь одной из них. После следовало обсуждение.

Р. Б. Брейтуэйт (подпись).

Ричард Брейтуэйт, выпускник философского факультета, являлся одним из молодых членов совета Кингз-Колледжа, и скорее всего именно по его рекомендации Алан получил приглашение на заседание клуба. Вне всяких сомнений к концу 1933 года Алан Тьюринг с головой погрузился в работу, пытаясь одновременно решить два вопроса чрезвычайной сложности. И в области квантовой физики, и в области чистой математики, задача состояла в том, чтобы установить связь между миром абстрактного представления и физическим миром, между символом и объектом.

Долгое время немецкие математики находились в самом центре мира научных исследований, как в области математики, так и в сферах остальных научных дисциплинах. Но уже к концу 1933 года от центра научного мира остались лишь руины, когда атмосфера в Геттингенском университете радикально изменилась. Здесь следует отметить, что Геттингенская математическая школа — это, в первую очередь, школа Гильберта. Его научные интересы охватывали практически всю математику: теорию чисел, алгебру, функциональный анализ, геометрию, логику. В каждой из этих областей он получил выдающиеся результаты. И именно школа Гильберта понесла при нацизме наибольшие потери. Джон фон Нейман был вынужден уехать в Америку, и после никогда оттуда не возвращался, другие математики прибыли в Кембридж. «Несколько выдающихся немецких ученых еврейского происхождения должны прибыть в Кембридж в этом году», — писал Алан в письме от 16 октября. — «По крайней мере двое из них точно будут числиться на факультете математики, а именно — Борн и Курант». Отсюда можно предположить, что он посещал курс лекций по квантовой механике, которые профессора Борн читал в том же семестре, или лекции по дифференциальным уравнениям, которые читал Курант в следующем семестре. Вскоре Борн переехал в Эдинбург, Шрёдингер обосновался в Оксфорде, но для большинства ученых Америка все же представлялась более доброжелательной и открытой для научных эмигрантов страной, нежели чем Великобритания. Новый Институт перспективных исследований, тесно сотрудничающий с Принстонским университетом во многих совместных проектах, взял на работу ряд учёных, бежавших из Европы от угрозы нацизма. О переезде Альберта Эйнштейна в Принстон французский физик Поль Ланжевен однажды сказал: «Это равносильно тому, что Папа Римский переехал из Ватикана в Новый Свет. Папа Римский мира физики переехал, и теперь Соединенные Штаты станут центром изучения естественных наук».

Но внимание нацистского бюрократического аппарата привлекло не только еврейское происхождение некоторых ученых, но и сами научные идеи, даже в области философии математики:

Но гораздо большим удивлением для англичан стал сам факт того, что государство или политическая партия могли интересоваться абстрактными идеями.

Между тем для читателей «Нью стейтсмен» враждебные чувства Гитлера, выраженные в Версальском мирном договоре, только подтвердили то, о чем всегда говорили Кейнс и Дикинсон. Сложность состояла в том, что учтивость по отношению к Германии теперь могла расцениваться как уступка её бесчеловечному режиму. Однако, консерваторы рассматривали новую Германию с точки зрения соотношения сил государств, и в этой перспективе она представляла новую потенциальную угрозу Великобритании, но вместе с тем и сильный «оплот», заслоняющий страну перед мощью Советского Союза. Неоднозначность сложившейся ситуации привела к возрождению Кембриджского Антивоенного движения в ноябре 1933 года. В связи с этим Алан писал:

Поделиться:
Популярные книги

Империя Хоста 5

Дмитрий
5. Империя Хоста
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Империя Хоста 5

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила