Иллюзия пользователя. Урезание сознания в размерах
Шрифт:
Аналогично мы не можем знать, закончит ли компьютер вычисления вообще — до тех пор, пока он их не закончил. Пока он не закончил, мы не знаем, закончит ли он или будет продолжать работать вечно.
Это, конечно, не касается простых вычислений повседневной жизни — относительно них у нас есть большой опыт. Но мы знаем это только потому, что у нас уже есть подобный опыт. Нет принципиальных универсальных логических правил, которые могли бы сказать нам то, что было бы нам не известно.
Тезис Черча-Тьюринга и проблема остановки Тьюринга говорят нам о том, что мы не можем
В этом отношении компьютеры сходны с искателями истины и маленькими детьми. Все, что мы можем сделать — это ждать, пока они закричат: «Я закончил!».
«Большинство математиков, возможно, предпочли бы ограничить разглашение информации о текущем статусе математики «членами семьи», — писал в 1980 году Морис Клайн в своем предисловии к книге о том, как математика теряет уверенность. — Если об этих проблемах узнает общественность, это будет так же нехорошо, как распространять сведения о чьих-то проблемах в браке».
И действительно, в течение многих последних лет прошло несколько волн кризиса. Последовательность этих событий подытожил Руди Рукер в своей книге, опубликованной в 1987 году: «Теорема Геделя показывает, что человеческая мысль является более сложной и менее механической, нежели мы могли ранее полагать. Но после первоначального волнения 30-х годов результат свелся к небольшому количеству технической математики. Теорема Геделя стала частной собственностью представителей математической логики, и многие из этих академиков впадают в высокомерие при любом предположении о том, что эта теорема может иметь какое-то значение для реального мира».
Философы тоже не слишком преуспели, хотя в начале 30-х годов польский философ Альфред Тарский действительно представил сходные с Геделем аргументы, демонстрирующие, что мы никогда не сможем вывести истины из системы, находясь внутри нее.
Но теорема Геделя все же стала широко известной, и не в последнюю очередь потому, что в 1979 году американский ученый-компьютерщик Дуглас Хофстадтер опубликовал очень красивую, очень сложную и очень знаменитую книгу «Godel, Escher, Bach и Kомпания», в которой он указывает на духовное родство Иоганна Себастьяна Баха (1685–1750), чью музыку современники находили чересчур «математической», графического художника Мориса Эшера (1898–1972), до сих пор не вполне признанного коллегами, и Курта Геделя (1906–1978), информация о котором только сейчас распространяется в широких кругах.
Существовала и другая причина, почему мир начал замечать Геделя: стало ясно, что феномен, на который он указал, не был ограничен только странными парадоксами древних греков. Недоказуемость и неразрешимость являются фундаментальными характеристиками нашего мира.
Дальнейшее развитие теоремы Геделя в 60-е годы шло под различными названиями — теория алгоритмической информации, алгоритмическая степень интеграции, алгоритмическая случайность. Но какое бы название мы ни выбрали, отцов-основателей этого направления было три: Рэй Соломонофф, Андрей Холмогоров и Грегори Чаитин.
Сложно? На самом деле все не так сложно, как кажется. На самом деле
Отправной точкой здесь являются числа. Что такое случайное число? Так как все три эти джентльмена были математиками, у них была склонность к бинарным числам — то есть числам, которые состоят только из нулей и единиц: 010110100110 …
Такие числа сложно воспринимать визуально — но если перед ними поставить запятую, то они будут выглядеть как старые добрые десятичные дроби: 0.10110100110. Является ли это число случайным? На самом деле мы просто записали серию случайных двоичных цифр. Но была ли это просто случайность?
Мы могли с таким же успехом 12 раз бросить монетку, обозначив «орла» как 1 и «решку» как 0. В этом случае, конечно, число было бы случайным? Можем попробовать: 100010000111 — нет, никакого обмана: мы бросили монетку 12 раз. Но если мы сделаем это еще раз, число, конечно, будет другим: 110011010000.
Конечно, можно было сделать и что-то совсем другое. К примеру, можно было устроить проверку нашего знания бинарных номеров, написав, допустим, 0.010101010101.
Вот это уже не кажется случайным — это последовательность 01. Такую последовательность можно было выразить проще: 0 точка 6 раз 01. Но на самом деле этот пример довольно хитрый, так как выразить данное число можно даже более кратко: это бинарное представление 1/3.
Смысл заключается в том, что определенные числа могут быть представлены в гораздо более краткой форме. К примеру, 111111111111111111 можно записать как «18 раз единица».
Если использовать десятичную систему, 0.42857142857 можно записать как 3/7, а 1234567891011121314151617181920 как «последовательность цифр от 1 до 20».
Но могут ли последовательности, которые мы получаем, бросая монетку, также быть записаны в краткой форме? Нет, не могут. Ведь они в сущности являются информацией о 12 последовательных событиях, полностью независимых друг от друга. Не существует системы, которая могла бы определить, появится ли в следующей позиции 0 или 1. Да, мы вполне можем ожидать, что много раз выпадут нули или единицы, а вся последовательность при этом будет состоять примерно из одинакового количества тех и других, так как мы ожидаем выпадения «орлов» и «решек» с примерно одинаковой вероятностью. Однако порядок их будет произвольным. В нем не будет системы.
Конечно, мы можем подбросить монетку 12 раз и получить последовательность 010101010101, которая может быть выражена очень кратко — но это не будет происходить слишком часто. На самом деле примерно можно подсчитать, что нам для этого придется подбрасывать монетку тысячи раз, прежде чем мы сможем получить эту последовательность (и любую другую специфическую последовательность). Не стоит принимать это во внимание.
Таким образом, случайные числа нельзя описать более кратко. Но другие — можно, к примеру, 0.42857142857 может быть записано как 3/7.
Стеллар. Трибут
2. Стеллар
Фантастика:
боевая фантастика
рпг
рейтинг книги
Его огонь горит для меня. Том 2
2. Мир Карастели
Фантастика:
юмористическая фантастика
рейтинг книги
На границе империй. Том 9. Часть 4
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Наследник
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
рейтинг книги
