Информация - энергия
Шрифт:
Тем не менее, российские учёные И. Е. Иродов и Л. А. Бессонов в 2001-2003г.г. дополнили систему уравнений Максвелла ещё одним уравнением, на 'свой страх и риск' ввели его в вузовские учебники по теоретической электротехнике. Учёные показали, что электроэнергия "мгновенно" передаётся от источника к потребителю. Но передача происходит не по проводам, а через окружающее пространство в ортогональном к проводящей поверхности проводника направлении - через изоляцию (11, 12, 13). Вернее по проводам передаётся лишь один из двух видов - низкочастотный вид энергии, а в ортогональном направлении, через изоляцию и далее через окружающее пространство, к клеммам источник-приёмник, передаётся другой вид - высокочастотная составляющая энергии из частотного диапазона преобразований двух видов энергии, проявляющегося свойствами электромагнитной энергии.
В концепции
Обращаем внимание Читателя на то, что в данном случае, в концепции двух видов энергии, под "окружающим пространством" надо понимать не "привычную нам" философскую сущность, необыкновенно стабильную, физическая природа которой непонятна даже учёным - а систему стоячих высокочастотных волн, образованных встречными разночастотными волнами двух видов энергии, наложенных друг на друга.
Окружающее нас трёхмерное пространство - ещё одна из форм существования высокочастотной лучистой энергии, представляет собой слившуюся систему стоячих волн, также разночастотных, с неразличимыми параметрами - итог действия суперпозиции над несчётным множеством резонансно взаимосвязанных волн. Электромагнитная энергия электрической технической системы также образована двумя видами энергии. Это напряжение в сети - высокочастотный вид потенциальной энергии, один из двух видов, распространяющийся через резонансную с ней локальную волновую составляющую названного пространства. Будучи вектором, оно парадоксально резонансно электромагнитному полю, создаваемому электрическим током в электропроводах. Они взаимно преобразуются резонансно и инвариантно, несмотря на различия в частотах и физических содержаниях этих полей, т.к. эта частотная составляющая пространства свойствами электромагнитного поля не обладает, учитывая, что её параметры для прямых измерений недоступны. Электрический ток в проводах - низкочастотная составляющая другого вида энергии, т.к. её переносчиками являются "низкочастотные электроны". Они также разночастотны, и среди них нет тождественных. Из этого следует, что скорость распространения напряжения не зависит от физической природы проводника, а движение электронов - зависит, что подтверждается эмпирическими фактами. Впрочем, это известно давно и стало (по умолчанию и вопреки запрету Н. Бора) основой промышленной электроники и электротехники. Тогда, что такое короткое замыкание проводников и какова роль изоляции проводников?
Короткое замыкание - это также область ортогонального скрещивания токов двух видов энергии - полевая форма системы электромагнитных солитонов - причины импульсного излучения им лучистой энергии в окружающее сферическое пространство и последующей конденсации - источников энергии квантовой среды вакуума ещё большей мощности. В электротехнике конденсация квантовой среды вакуума, происходит в форме электрического тока, "текущего" по проводам, мощность которого при коротком замыкании оголённых проводников парадоксально превышает мощность источников электроэнергии в системе. Надо исходить из предположения, что мощность тока короткого замыкания всегда превышает мощность источника электропитания сети, которое обычно дезорганизует электрическую систему. Другими словами, роль изоляции сводится к недопущению в электрических системах нежелательных коротких замыканий - разночастотных ортогональных токов энергии - почти неконтролируемых притоков энергии избыточной мощности из квантового вакуума в частотном диапазоне проявления электроэнергии.
Надо отметить, что явления, типа коротких замыканий, имеют место во всех формах энергетических процессов - это все виды лавинных конденсаций, проявляемых разрушениями и катастрофами любой физической природы. И надо полагать, что в квантовой среде вакуума скрещивающиеся оси-лучи - они же, при загрубении масштабов, узловые точки стоячих волн, создающие эту среду. При достаточно коротком расстоянии между скрещивающимися осями, возникает короткое замыкание". Так возникает явление резонанса. Отсюда (в антропоморфном восприятии) бесконечно большая мощность конденсации энергии квантового вакуума и, следовательно - бесконечно большая плотность его энергии, создающая наше пространство.
О такой плотности энергии и возможной сверхсветовой скорости
Так, Лорд Кельвин доложил в Лондонском королевском институте 27 апреля 1900г.: "Эфир должен обладать свойствами твёрдого тела, через которое, тем не менее, планеты движутся, не встречая сопротивления... Закон Максвелла-Больцмана о равномерном распределении совершенно не в состоянии объяснить, почему из экспериментально найденной удельной теплоёмкости молекулы азота следует, что ни энергия вращения молекулы, ни колебаний её атомов никак не проявляются". Кельвин допускал сверхсветовую скорость движения некоей частицы в пространстве очень маленькой конической волны, в соответствии с тем же принципом, что и сверхзвуковая скорость, доказанная для звука замечательными фотографиями Маха".
В электротехнике в повседневной инженерной практике авторам различных научных публикаций в голову не приходила даже мысль, исключая югославо-американского изобретателя Н. Теслы, и он реализовал свою идею - передачи электромагнитной энергии на расстояние не по проводам, а через пространство - как материальную среду. Иначе говоря, "короткое замыкание" в электротехнике - это проявление универсального метафизического закона - передача одного из двух видов электромагнитной энергии - полевой его формы. Но не по проводам, а через окружающее пространство в ортогональном направлении к поверхности металлического проводника электрического тока - традиционной формы электроэнергии, но другого её вида - "совершенно не электрического", но до тех пор, пока короткое замыкание проводников отсутствует. Оба вида электромагнитной энергии в коротком замыкании взаимосвязаны между собой резонансно, инвариантно, автоколебательно. На этой основе Тесла создал для себя собственную теорию передачи электроэнергии через окружающее пространство. Изложить эту теорию понятным для инженеров и учёных языком он не сумел или не захотел. Полагаем, что в этом вполне преуспели российские учёные - И. Е. Иродов и Л.А.Бессонов (11. 12). Они сделали это на основе системы уравнений Максвелла, добавив в его уравнения новый член.
ДВА ВЫСКАЗЫВАНИЯ Л. БРИЛЛЮЭНА (8):
1) "Детерминизм необходимо заменить статистическими вероятностями. Учёный может верить или нет в детерминизм. Это дело убеждения и оно относится к области метафизики".
2) "Придерживаясь только наблюдаемых фактов, мы можем говорить лишь о возможных взаимосвязях между одним экспериментом и другим, но никогда не должны обсуждать, что происходит в то время, когда мы не производим никакого наблюдения. Если мы не можем их наблюдать, то мы признаём, что они не реальны и могут существовать только в нашем воображении их авторов".
АВТОРСКОЕ ПРИМЕЧАНИЕ. В первом высказывании учёного - аналогичное можно утверждать и в отношении всех физических законов - они не доказуемы и открыты на основе наблюдений. Во втором высказывании - воображения учёных, мысли и процессы мышления - это также энергетические процессы, информацию о которых мозг получает из окружающей среды, т.е. они реальны, но происходят в других частотно-масштабных диапазонах движения частиц энергии, крайне малых и высокочастотных, и подчиняются тем же законам, но с другими "физическими постоянными". Они недоступны для прямых измерений, но познаваемы по низкочастотным проявлениям движения двух видов энергии на этих высоких частотах, поскольку взаимосвязаны каким-то законом. В силу детерминизма они взаимосвязаны и с нашим вещественным миром, следовательно, надо искать взаимосвязь между разнородными физическими законами.
Подобные попытки производились и раньше, но безуспешно. Например, сторонники и противники детерминизма сравнивают несравнимые вещи - проявления энергии в разных, поэтому несравнимых частотно-масштабных диапазонах движения энергии. И ещё - экстраполируют фундаментальные физические постоянные в любые геометрические масштабы материи-энергии. О недопустимости подобных действий свидетельствует прекращение действий всех известных законов уже в наномасштабах любого вещества (4).
За рубежом приведённое толкование квантовой теории Гейзенбергом и Бриллюэном изначально вызвало энергичные протесты ряда физиков (Л. де Бройль, Эйнштейн, Бом, Вижье, Яноши и др.). Споры не утихли и в настоящее время. Полагаем, что концепция двух видов энергии может прояснить некоторые спорные аргументы двух сторон, путём введения во взаимно исключающие утверждения - общих "областей сопряжения".