Чтение онлайн

на главную - закладки

Жанры

Информация как основа жизни
Шрифт:

[2] Утверждение об апериодичности расположения символов, которыми записана информация, может вызвать такой вопрос: а как быть с бесконечной дробью типа 6,66... или числом =3,14...? Первое состоит целиком

из периодической компоненты, второе - полностью лишено периодичности. Позволяет ли это утверждать, что число 6,66... не несет никакой информации, а второе, напротив, содержит ее в неограниченном количестве? Конечно, нет. Здесь неверна сама постановка вопроса. И в первом, и во втором случае речь идет о числах как таковых, которые в этом отношении ничем не отличаются от чисел типа 1,

и т. п., но не используются в качестве носителей информации. Если же создать цифровой код, включающий и эти два числа, то каждое из них будет нести функцию одного единственного символа и будет рассматриваться в совокупности с другими символами данного кода, к которым и относится принцип апериодичности, если они использованы для записи информации.

[3] Ведь, будучи "бездеятельной", информация не может обеспечить собственное воспроизведение и в конце концов погибает вместе со своим стареющим носителем.

[4]

Сказанному выше как будто бы противоречит опыт человечества, на протяжении длительного времени оперирующего с математикой и рядом математических теорий, считающихся истинными, но никогда не подвергавшихся практической проверке. Но противоречие здесь только внешнее. Ведь каждая математическая теория представляет собой конструкцию, получаемую путем логических следствий из некоторых посылок, которые могут быть истинными либо ложными. Поэтому истинность математической теории гарантируется истинностью ее исходных положений и правильностью логических следствий из них. То и другое, независимо от данной теории, неоднократно подвергалось эмпирическим проверкам. Проблема истинности математических построений хорошо разработана. Но окончательным критерием истинности и здесь является практика – т. е. возможность построения некоторого объекта, опирающаяся на данную теорию.

[5] Для сопоставления эффективности информации, заселяющих разные информационные поля, удобно использовать величину "приведенной эффективности" А1 = А /А.

[6] Исследование поведения системы в области особых точек можно найти в [8, 9].

Поделиться:
Популярные книги

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Хильдегарда. Ведунья севера

Шёпот Светлана Богдановна
3. Хроники ведьм
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Хильдегарда. Ведунья севера

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Самый богатый человек в Вавилоне

Клейсон Джордж
Документальная литература:
публицистика
9.29
рейтинг книги
Самый богатый человек в Вавилоне

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка