Чтение онлайн

на главную - закладки

Жанры

Интеллектуальные уловки. Критика современной философии постмодерна
Шрифт:

Из-за этих злоупотреблений мы часто встречаем у постмодернистских авторов ссылку на теорию хаоса как на революционную составляющую против ньютоновской механики — обозначенной как «линейная» — или на квантовую механику как на пример нелинейной теории160. На самом деле так называемое ньютоновское «линейное мышление» замечательно использует нелинейные уравнения; а также многие примеры из теории хаоса взяты из ньютоновской механики, и изучение хаоса представляет собой своеобразное возрождение ньютоновской механики как предмета научного исследования. А фундаментальное уравнение квантовой механики Шредингера — пример линейного уравнения; и квантовая механика, которая часто приводится в качестве примера «науки постмодерна» — на самом

деле является единственным известным (по крайней мере, из известных нам) примером не просто линейного приближения к более фундаментальной нелинейной теории, а последовательно линейной теорией.

Однако чаще всего речь идет о неверном понимании связи между линейностью, хаосом и существованием определенного решения уравнения. Нелинейные уравнения, как правило, труднее для разрешения, чем линейные, но это не всегда: существуют очень трудные проблемы решения линейных уравнений так же, как очень простые решения для нелинейных. Например, уравнения Ньютона для решения проблемы Кеплера с двумя небесными телами (Солнцем и одной планетой) — нелинейные, однако решаются однозначным образом. Однако, чтобы говорить о хаосе, необходимо, чтобы уравнение было нелинейным и (мы немного упрощаем) имелось бы не единственное решение, но эти два условия не являются достаточными — ни по отдельности, ни вместе — для того, чтобы говорить о хаосе. То есть, в противоположность распространенному мнению, нелинейная система не обязательно является хаотичной.

Трудностей и заблуждений становится больше, когда дело касается применения математической теории хаоса к конкретным ситуациям в физике, биологии или социальных науках161. В самом деле, следует иметь представление о соответствующих переменных и типе их эволюции; к тому же трудно бывает найти математическую модель одновременно достаточно простую для исследования и способную адекватно описать выбранный объект. Впрочем эти проблемы встают перед математической теорией каждый раз, когда она применяется к реальности (достаточно вспомнить теорию катастроф).

Часто можно наблюдать совершенно фантастические попытки так называемого «применения» хаоса, например, к анализу прибыли предприятия или к литературе. Иногда вместо хорошо разработанной математически теории хаоса имеют ввиду только разрабатываемые теории сложности и самоорганизации, что еще больше запутывает ситуацию.

Еще одно заблуждение возникает, когда смешивается математическая теория хаоса с народной мудростью суждений о значительных последствиях незначительных причин типа «если бы нос Клеопатры был короче…». Не прекращаются рассуждения о хаосе «относящемся» к истории или к обществу. Но когда говорят об обществе или истории, то имеют дело (скорее всего) с системами с большим числом переменных, для которых, и это главное, невозможно составить уравнения. Так что рассуждения о хаосе применительно к таким системам не добавляют к народной мудрости ничего нового162.

Последнее заблуждение происходит из-за вольной или невольной путаницы различных значений слова «хаос», вызывающий множество ассоциаций: его специального значения в математической теории нелинейных динамических систем — где оно близко по смыслу «чувствительности к исходным условиям» — и того широкого смысла, который придается ему в социологии, политике, истории и даже теологии — где оно часто оказывается синонимом беспорядка. Как мы увидим, Бодрийар и Делез-Гваттари используют эту путаницу (или попадают в нее) самым бессовестным образом.

8. Жан Бодрийар

Жан Бодрийар занимается социологической работой, которая подвергает испытанию и разрушению единство существующих теорий. С помощью насмешки, а также детальной точности он освобождает существующие описания общества от спокойной уверенности и наполняет их юмором.

Монд (1984b, с. 95, выделено нами)

Социолог и философ Жан Бодрийар известен своими размышлениями над проблемами реальности, видимости и иллюзии. Здесь мы обратим

внимание на мало изученный аспект его работы, а именно частое употребление им научной терминологии.

В некоторых случаях речь явно идет о метафорах. Бодрийар писал, например, о войне в Персидском заливе:

Самое удивительное — то, что две гипотезы: апокалипсис реального времени и чистой войны, и победа виртуального над реальным — имеют место в одно и то же время, в одном и том же пространстве-времени, и неумолимо следуют друг за другом. Это свидетельство того, что пространство события стало гиперпространством с многократным преломлением, что пространство войны окончательно стало неевклидовым. (Бодрийар, 1991, стр. 49, курсив в тексте)

Создается впечатление, что существует традиция использования математических понятий вне их контекста. У Лакана это торы и мнимые числа, у Кристевой — бесконечные множества, в данном же случае это неевклидовы пространства (употребляемые в общей теории относительности)163. Что все это могло бы означать? Впрочем, а что представляло бы собой евклидово пространство войны? И наконец следует подчеркнуть, что понятие «гиперпространство с многократным преломлением» не существует ни в математике, ни в физике; это словосочетание — бодрийаровское — чистая выдумка.

Статьи Бодрийара переполнены подобными физическими метафорами, например:

В евклидовом историческом пространстве, самый краткий путь от одной точки до другой, это прямая, прямая Прогресса и Демократии. Но это верно лишь для линейного пространства Просвещения164. В нашем, неевклидовом, пространстве конца века, один неблагоприятный изгиб необратимо изменяет все траектории. Он, без сомнения, связан со сферичностью времени (она становится видимой на горизонте в конце века как сферичность земли — на горизонте в конце дня), или в тонкой дисторсии (искажении) поля притяжения. […]

С помощью этого опрокидывания истории в бесконечность, с помощью этого гиперболического изгиба, сам век ускользает от своего конца. (Бодрийар 1992, с. 23–24)

Именно ему, без сомнения, мы обязаны этим забавным физическим опытом: впечатлением, что коллективные или индивидуальные события затягиваются дырой памяти. Эта утрата, несомненно, вызвана тем самым движением обратимости, тем самым параболическим изгибом исторического пространства. (Бодрийар 1992, стр. 36)

Но физика в целом у Бодрийяра не метафорична. В его собственно философских работах физика берется (как нам кажется) буквально, как, например, в эссе «Неизбежное, или обратимая необратимость», посвященном теме случайности:

Фундаментальными являются эта обратимость причинного порядка, эта обратимость следствия по отношению к причине, эта прецессия и эта победа следствия над причиной. […]

Это то, что происходит с наукой, когда она не останавливается на том, чтобы подвергнуть сомнению в детерминистский принцип причинности (вот она, первая революция). Она, по ту сторону принципа неопределенности, который оказывается еще и гиперрациональностью, предчувствует: случайность — это колебание законов, что само по себе уже удивительно. И еще она, на пределе физических и биологических возможностей своего опыта, предчувствует, что существует не только колебание, неопределенность, но и возможная обратимость физических законов. Именно это и составляет абсолютную загадку: не некая сверхформула или метауравнение вселенной (это и было представлено теорией относительности), но идея того, что всякий закон может обратить сам себя (не только обратить частицу в античастицу, а материю в антиматерию, но и сами законы). Эта обратимость, гипотеза о которой всегда высказывалась в великих метафизических теориях — фундаментальное правило игры видимостей, метаморфозы видимостей, против необратимого порядка времени, закона и смысла. Но любопытно наблюдать, как приходит наука к тем же, настолько противоречащим ее собственной логике и ее собственному развитию гипотезам. (Бодрийяр, 1983, стр. 232–234, курсив в тексте)

Поделиться:
Популярные книги

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Пробуждение. Пятый пояс

Игнатов Михаил Павлович
15. Путь
Фантастика:
фэнтези
уся
5.00
рейтинг книги
Пробуждение. Пятый пояс

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Буря соперничества

Мазуров Дмитрий
4. Громовая поступь
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Буря соперничества

Стрелок

Астахов Евгений Евгеньевич
5. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Стрелок

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Загадки Лисы

Началова Екатерина
3. Дочь Скорпиона
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Загадки Лисы

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Цикл "Идеальный мир для Лекаря". Компиляция. Книги 1-30

Сапфир Олег
Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Цикл Идеальный мир для Лекаря. Компиляция. Книги 1-30

Каторжник

Шимохин Дмитрий
1. Подкидыш
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Каторжник