Интернет: Заметки научного сотрудника
Шрифт:
Итак, возвращаюсь к вопросу: чей приоритет в открытии лизоцима? Того самого русского ученого или Флеминга? Статья в российском популярном журнале, из которой я много лет назад узнал про историю с разбитым яйцом, призывала пересмотреть приоритет и отдать его тому русскому ученому. Судя по всему, не отдали. И отдать было бы, на мой взгляд, неправильно. Поскольку, повторяю, приоритет обычно принадлежит не тому, кто (возможно) первым открыл, а тому, кто убедил.
В связи с этим: естественно, сейчас есть масса соображений, гуляющих по разным изданиям, что Флеминг был вовсе не первым, что о чудодейственных свойствах заплесневевших продуктов питания было известно давно, что пенициллин открыли и до него, и так далее. Правда, критики почему-то умалчивают,
Недавно я читал некую интернетовскую дискуссию по космологии, и один из участников, высказав свою гипотезу, заметил: «Жаль, что, когда моя идея получит подтверждение и признание, у нее наверняка будет другой автор». Я воздержался от интернетовских комментариев о том, что, мол, милый друг, а на что ты рассчитываешь? Хочешь признания – иди, публикуй свою идею, отстаивай ее, вливайся в информационные потоки, убеждай научный и прочий мир в своей гипотезе, доказывай ее справедливость, в том числе доказывай экспериментально, если это возможно… Это трудно, требует много времени и усилий и далеко не обречено на успех. Это – не общий треп в Интернете. Но если когда-нибудь признание получит тот, кто убедил, то не исключено, что наш интернетовский дискутант будет будоражить общественное мнение, заявляя, что приоритет должен быть его. Такое бывает нередко в разных конкретных проявлениях.
Так оказалось, что мои научные работы в некоторой части были связаны и с лизоцимом и с пенициллином. Эти работы описаны в двухтомнике «Ферментативный катализ»; первый том называется «Простые субстраты» (1980), а второй – «Полимерные субстраты» (1984). Фактически оба тома – это моя докторская диссертация, так сказать, переработанная и дополненная. Флеминг не знал, как лизоцим действует на клеточные стенки. Он знал, что лизоцим их растворяет, но не знал, как именно, в результате какой химической реакции. Клеточная стенка – это гигантская (по масштабам молекул) трехмерная макромолекула, защищающая содержимое бактериальной клетки от внешних воздействий. Насколько прочна эта структура, можно судить по тому, что она выдерживает внутриклеточное давление до 30 атмосфер. Лизоцим расщепляет определенное повторяющееся химическое звено, или повторяющуюся химическую связь клеточной стенки и после расщепления некоторого количества этих связей клеточная стенка распадается на отдельные фрагменты и растворяется в воде. Так вот, я разрабатывал (и, пожалуй, разработал) теорию скоростей этих реакций и то, как эти реакции можно изучать и описывать количественно. Ведь «концентрацию» бактериальной клеточной стенки, а точнее, этих самых химических связей так просто не определить, а если не определить, то как количественно описать реакцию и ее скорости? Оказалось, что бактерии можно «титровать» лизоцимом, примерно как кислоту можно титровать щелочью. Можно находить точку эквивалентности между их концентрациями, наблюдая за скоростями растворения клетки. И таким образом описывать бактериолитическое действие лизоцима в строгих рамках физической химии. Или ферментативной кинетики, кому что нравится. Вот это-то среди других теорий и описывал я во втором томе моей книги.
А часть первого тома посвящена превращениям пенициллина с помощью ферментов, точнее, одного фермента под названием пенициллинамидаза. «Превращениям» в том смысле, что этот фермент может как расщеплять пенициллин «пополам» – при этом терапевтическая активность пенициллина полностью пропадает, – так и синтезировать из полученных половинок новые пенициллины. Например, из пенициллина получают ампициллин и многие другие «полусинтетические» пенициллины. Сам-то пенициллин – относительно небольшая молекула, всего двадцать пять С – С-, С – S-, C – O-, С=O– и С – N-связей. Поэтому он и попал в том, где «простые субстраты».
В этой связи – проходное воспоминание. Заходит как-то в нашу лабораторию в корпусе «А» Ефим Арсеньевич Либерман, замечательная личность, физик и биолог, лауреат Государственной премии СССР. Просто проходил по коридору и по старой памяти
– Над чем работаешь? – это Либерман меня спрашивает. Я говорю, что вот, пытаюсь новое производное пенициллина смастерить, с помощью фермента.
– А что, – спрашивает, – в принципе-то МОЖНО получить? – Конечно, – говорю, – по термодинамике должно проходить, надо только условия подобрать, чтобы равновесие сместить в сторону получения.
– Ну тогда зачем время тратить? – это Либерман. – Если известно, что в принципе можно получить, то это уже не наука.
Точка зрения физика.
24. Иммобилизованные ферменты
Защита моей кандидатской диссертации в начале 1970-х годов примерно совпала по времени с началом новой эры в изучении и применении ферментов – эры иммобилизованных ферментов и инженерной энзимологии. Напомню, что ферменты – это катализаторы биологического происхождения, или биокатализаторы. Они, как и прочие катализаторы, ускоряют химические реакции. Но в отличие от традиционных химических катализаторов – металлов и их комплексов с органическими молекулами, – обычно получаемых искусственно, ферменты синтезируются живыми организмами – микробами, растениями, животными. И прочими насекомыми, червями, земноводными, морскими организмами и так далее.
Ферменты представляют собой, как правило, белковые образования, часто сопряженные с ионами металлов, а также сахарами и прочими органическими соединениями, которые иногда называют «коферменты». Ферменты по размеру больше молекулы, скажем, воды в тысячи и десятки тысяч раз. Если вода состоит из трех атомов, пенициллин, упоминаемый ранее, – из 41 атома, холестерин, опять же упоминаемый ранее, – из 68 атомов, то молекулы белков состоят из тысяч, десятков и иногда сотен тысяч атомов. Тем не менее белки можно выделить в индивидуальном виде и сотни их, если не тысячи, уже выделены. Можно спорить, в насколько чистом виде они выделены, и придираться к долям процента примесей, но это опять же детали.
А поскольку ферменты – это крупные органические молекулы, состоящие из сотен и тысяч химических групп – аминогрупп, карбоксильных, гидроксильных и прочих, – многие из которых торчат наружу, высовываясь в воду, в которой фермент растворен, то для химика не представляет особого труда достаточно прочно присоединить какую-либо из этих групп к стеклянным шарикам, гранулам пластмассы, кусочкам древесины и прочим твердым или мягким «носителям». Ведь стекло тоже содержит доступные химические группы – гидроксильные. И целлюлоза – тоже гидроксильные, но в другом окружении, нежели в стекле. А пластмассы вообще можно подобрать на любой химический вкус. Короче, ферменты можно присоединить к водонерастворимым носителям и тем самым их «иммобилизовать». То есть в переводе с английского термина – «обездвижить».
Такими иммобилизованными ферментами на гранулах носителя можно наполнить колонну-реактор, поставленную, например, вертикально, и пропускать через нее раствор субстрата, то есть вещества, в котором нужно провести необходимое химическое превращение. Такое измененное вещество называется, естественно, продуктом. Так вот, субстрат прокачивается через колонну, раствор продукта собирается на выходе колонны, а активный, работающий фермент продолжает оставаться в колонне. То есть мы превратили его из гомогенного катализатора в гетерогенный.
Осознание этой концепции вызвало революцию в использовании ферментов для технологических целей. Результатом явилось создание инженерной энзимологии, то есть широкомасштабного использования ферментов для промышленных целей. В середине 1980-х в Союзе вышел восьмитомник под названием «Биотехнология», а один из томов так и назывался – «Инженерная энзимология». Авторами его были те, чьи имена уже упоминались выше, в других главах и другом контексте. А именно И.В. Березин и его ученики, а также ученики его учеников. Эта книга была итогом десятилетней работы нашего коллектива, работы и осмысления.