Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №11
Шрифт:

— мультипликативная погрешность;

— аддитивная погрешность;

— аддитивно-мультипликативная погрешность (при нескольких влияющих величинах).

В зависимости от количества влияющих величин и их взаимной зависимости, а так же зависимости между ними и измеряемой величиной могут быть выделены следующие модели погрешности измерительного канала:

— скалярная модель с независимыми сигналами (одна влияющая величина ?{t), px? = 0, xh(t) = 0, ?h(t) = 0);

— скалярная модель с зависимыми сигналами (одна влияющая величина ?(t), px? не = 0, xh(t) = 0, ?h(t) = 0);

скалярная модель с учетом гармонических составляющих (одна влияющая величина ?(t), px? не = 0, xh(t) не = 0, ?h(t) не = 0);

— векторная модель с независимыми составляющими (вектор влияющих величин [?] = [?1(t),?2(t),?3(t)….?n(t)], матрица корреляции вектора [?] нулевая);

— векторная модель с зависимыми составляющими (вектор влияющих величин [?] = [?1(t),?2(t),?3(t)….?n(t)] матрица корреляции вектора [?] ненулевая);

Рассмотрим основные случаи, при этом опустим громоздкие математические выкладки и промежуточные вычисления.

Суммарная погрешность измерительного преобразователя, при статистической независимости между составляющими, может быть определена по формуле [4]:

(3)

где ?осн — основная погрешность средства измерений; ?дин — динамическая погрешность; ?доп — дополнительная погрешность; n — число влияющих величин.

Выражение (3) также может быть представлено в следующем виде:

(4)

где ?(?i) — функция влияния, или коэффициент влияния, когда она линейна, или функция совместного влияния нескольких влияющих величин ?(?i,?j); ?iiтая влияющая величина; ?0i— значение влияющей величины принятое при градуировке ИП; i = 1,2…n; j = 1, 2…n, при i не = j.

Мгновенное значение дополнительной погрешности может быть определено из разности сигнала с выхода преобразователя и входного сигнала:

?доп(t) = (y(t)x(t)) = ax(t)[?(t)?0]. (5)

Так как в выражение (4) дополнительная погрешность входит в виде квадрата своего значения, то более удобно определять сразу ее квадрат, поэтому (5) запишем в виде:

?2доп(t) = a2x2(t))[?(t)?0]2.

В технологических измерениях, как правило, интерес представляет не мгновенное, а среднее значение измеряемого параметра, а, следовательно, и расчет дополнительной погрешности необходимо проводить в «среднем» за период времени.

Выражение

для расчета математического ожидания квадрата мультипликативной дополнительной погрешности без учета динамических характеристик каналов воздействия измеряемой и влияющих величин имеет вид [10]:

M{?2доп} = a2[?2x?2? + ?2x?2?(1 + 2p2x?) + ?2x?2? + ?2??2x + 4?x???x??px?]. (6)

где px? — коэффициент корреляции между измеряемой и влияющей величинами.

Здесь и в дальнейшем под обозначением ??, будем понимать смещение математического ожидания влияющей величины относительно значения ?0, которое принято при градуировке измерительного преобразователя.

В том случае, когда в сигналах входной и влияющей величин присутствуют гармонические составляющие, определяемые соответственно как:

xh(t) = Cxsin(?xt),

?h(t) = C?sin(??t).

где Cx и C? — амплитуды гармонических составляющих соответственно входного и влияющего воздействий; ?x и ?? — их частоты.

Выражение для расчета квадрата мультипликативной дополнительной погрешности с учетом гармонических составляющих коррелированных сигналов измеряемой и влияющей величин имеет вид [5]:

В том случае, когда гармонические составляющие случайных процессов xh(t) и ?h(t) коррелированы, т. е. ?x = ??, выражение (7) усложняется:

где ф — сдвиг фаз между гармоническими составляющими.

При воздействии на измерительный преобразователь n статистически независимых влияющих величин (рис. 1), не коррелированных с входным воздействием, выражение для расчета квадрата мультипликативной дополнительной погрешности имеет вид

где ai — коэффициент влияния i– той влияющей величины.

Поделиться:
Популярные книги

Барин-Шабарин 2

Гуров Валерий Александрович
2. Барин-Шабарин
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Барин-Шабарин 2

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Золотой ворон

Сакавич Нора
5. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Золотой ворон

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Морской волк. 1-я Трилогия

Савин Владислав
1. Морской волк
Фантастика:
альтернативная история
8.71
рейтинг книги
Морской волк. 1-я Трилогия