Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №11
Шрифт:

Рис. 1. Структура модели возникновения дополнительной погрешности при наличии множества влияющих воздействий.

При воздействии на ИП n статистически зависимых влияющих величин, которые коррелированы с входным воздействием, выражение (9) существенно усложняется и принимает вид:

Во всех предыдущих расчетах предполагалось, что тракты прохождения измеряемой и влияющей величин являются безинерционными, или, искажениями формы сигналов за счет инерционности

можно пренебречь. В том случае, когда в каналах присутствует инерционность (рис. 2), расчет математического ожидания квадрата мультипликативной дополнительной погрешности осуществляется по иной схеме.

Рис. 2. Структура модели образования динамической и мультипликативной дополнительной погрешностей при учете динамических свойств каналов сигналов входного и влияющего воздействий

При наличии в измерительном канале инерционности в результат измерения помимо дополнительной погрешности вносится еще и динамическая погрешность. Существующие методы расчета позволяют вычислить отдельно каждую составляющую, а затем, произвести геометрическое суммирование. При этом, как правило, предполагается, что эти составляющие статистически независимы. В действительности, это допущение не совсем корректно, т. к. не учитывает наличие корреляционной связи между составляющими суммарной погрешности, возникающей при прохождении измерительного сигнала и сигнала влияющей величины через тракт ИП.

Суммарная погрешность ИП, будет определяться из соотношения:

?(t) = x(t) — y1(t) = x(t) — [ay(t)e(t) + y(t)].

Определим квадрат суммарной погрешности:

?2(t) = [x(t)y(t)ay(t)e(t)]2 = [x(t)y(t)]2 + a2y2(t)e2(t)2ay(t)[x(t)y(t)].

В выражении (11) присутствуют 3 составляющие. Первая определяет квадрат динамической погрешности ?2дин; вторая — квадрат дополнительной погрешности ?2доп; третья — член, обусловлен наличием корреляционной связи между дополнительной и динамической погрешностями.

Рассмотрим, в качестве примера, случай, когда случайный процесс на входе измерительного канала имеет спектральную плотность мощности вида:

Sx(?) = 2?2x?/?(?2 + ?2),

где ? — параметр функции СПМ, а передаточная функция каналов воздействия сигналов ИП описываются инерционным звеном первого порядка:

W(j?) = 1/(1 + j?T))

где Т — постоянная времени.

Дисперсии измеряемой и влияющей величин соответственно равны [12]:

?2y = ?2x/(1 + ?T1),

?2e = ?2?/(1 + ?T2),

Примем

так же, как наиболее характерный случай, что корреляционная матрица входного воздействия и влияющей величины определена как:

где ах, а? и ах?, а, с = ?x??px? — параметры соответственно корреляционных и взаимных корреляционных функций измеряемого и влияющего воздействий.

Математическое ожидание квадрата динамической погрешности равно:

M{?2дин} = ?xВ1/(1 + B1)

где В1 = аxТ1.

Математическое ожидание квадрата мультипликативной дополнительной погрешности:

где В2 = а?Т2.

Математическое ожидание корреляционной составляющей суммарной погрешности определяется из следующего выражения:

(14)

где B3 = ax?T1; B4 = ax?T2.

Максимальное увеличение суммарной динамической и дополнительной погрешности, при учете корреляционной связи между этими погрешностями, в рассмотренном примере, не превышает 20 %. Такое увеличение суммарной погрешности является несущественным и, поэтому, во многих случаях, корреляционной составляющей можно пренебречь.

В том случае, если дополнительная погрешность является чисто аддитивной, то математическое ожидание ее квадрата определяется только статистическими параметрами влияющей величины:

M{?2доп} = b2[?2? + ?2?]. (15)

где b — коэффициент влияния аддитивной дополнительной погрешности.

На рис. 3 представлена структура модели образования мультипликативно-аддитивной дополнительной погрешности.

Рис. 3. Структура модели образования мультипликативно-аддитивной дополнительной погрешности измерительного преобразователя

Дополнительная погрешность на выходе ИП равна:

?доп(t) = ax(t)?(t) + b?(t).

Математическое ожидание квадрата мультипликативно-аддитивной дополнительной погрешности, при учете корреляции между измеряемой и влияющей величиной, равно:

Поделиться:
Популярные книги

Барин-Шабарин 2

Гуров Валерий Александрович
2. Барин-Шабарин
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Барин-Шабарин 2

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Золотой ворон

Сакавич Нора
5. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Золотой ворон

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Морской волк. 1-я Трилогия

Савин Владислав
1. Морской волк
Фантастика:
альтернативная история
8.71
рейтинг книги
Морской волк. 1-я Трилогия