Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
Изготовление вискозы
В колбе Эрленмейера тщательно перемешаем 3 г чистой целлюлозы (можно взять фильтровальную бумагу) с 18 %-ным раствором едкого натра (плотность 1,2 г/см3) и оставим на 1 час. Обработанную щелочью целлюлозу отфильтруем и тщательно отожмем для удаления избытка щелочи, добавим 5 мл сероуглерода CS2 и оставим на 3–5 часов (Сероуглерод очень ядовит, легко воспламеняется и имеет отвратительный запах. Работать с ним можно только под вытяжкой. — Прим. перев.).
При этом целлюлоза подвергается так называемому ксантогенированию.
На следующий день попробуем формовать из вискозы волокно с помощью прибора, уже использованного нами для изготовления медно-аммиачного шелка. Диаметр отверстия фильеры должен быть 0,3–0,5 мм. Осадительную ванну заполним 10–15 %-ной серной кислотой или, лучше, нагретым до 50 °C раствором 12 мл концентрированной серной кислоты, 30 г сульфата натрия и 1 г сульфата цинка (Осторожно! Сульфат цинка ядовит!) в 100 мл воды. Нить нельзя быстро вытягивать из осадительной ванны. Изготовленную нить нужно промыть водой для удаления серы, обработать горячим 15 %-ным раствором сульфита натрия, промыть 0,5 %-ной соляной кислотой, затем снова водой и в заключение высушить.
Штапельное волокно получают из вискозы, протягивая ее одновременно через множество (до 15 000) тончайших отверстий. Нити, выходящие из нескольких отверстий, скручиваются вместе в жгут. После дальнейшей обработки их разрезают на так называемые штапельки длиной 30-200 мм. Затем волокно обрабатывают еще соответствующими растворами, чтобы придать ему извитость и ворсистость, свойственную шерсти.
В наши дни вискозный шелк приобрел наибольшее значение из всех полусинтетических волокон. Открытый Тофеном и Стирном в Англии, он после первой мировой войны получил признание и в других странах. Только в ГДР выпускается ежегодно более 25 000 т тканей из искусственного шелка и 110000 т штапельных тканей.
ХИМИЯ ОТКРЫВАЕТ НОВЫЕ ПУТИ
Недавно на международной ярмарке в Лейпциге внимание посетителей привлекла к себе вывеска над павильоном одной английской фирмы, торгующей текстильными изделиями. По распоряжению управляющего этой фирмой, из огромных букв были собраны слова: «Шерсть нельзя заменить ничем!» Ну что же, ему нельзя отказать в умении рекламировать свой товар. Однако этот бизнесмен не учел, что на той же самой выставке других павильонах были представлены великолепные ткани, изготовленные полностью или преимущественно из синтетических волокон; пряжа и нитки, обладающие такими достоинствами, которых нет у натуральных волокон.
Даже закоренелые скептики, которых раньше было не так уж мало, в последние годы могли воочию убедиться в том, что цельносинтетические волокна по прочности, стойкости к воде, погоде, свету, бактериям и насекомым, эластичности и способности защищать от холода часто превосходят волокна природного происхождения — шерсть, хлопок и шелк.
Химики во многих странах непрерывно трудятся над созданием новых волокон и улучшением качества уже известных.
Не отстают от них и технологи. Изменяя состав сырья
Всего химики уже предложили почти 1000 различных типов синтетических волокон, однако из них лишь несколько производятся промышленностью в крупных масштабах. В настоящее время в ГДР наибольшее значение имеют четыре типа волокон: поливинилхлоридные, полиамидные, полиакрилонитрильные и полиэфирные.
Выбор именно этих волокон обусловлен не только химическими, физическими и технологическими факторами, но и, прежде всего, экономическими причинами. При массовом производстве сырье обязательно должно быть дешевым и легкодоступным. Кроме того, необходимо, чтобы свойства конечных продуктов можно было варьировать в широких пределах. Упомянутые типы волокон удовлетворяют всем этим требованиям.
Первое цельносинтетическое волокно было выпущено промышленностью в 1934 г. под названием волокно PC. Оно было изготовлено на основе поливинилхлорида. В результате хлорирования винилхлорида (см. схему) можно получить 1,1-дихлорэтен (несимметричный дихлорэтилен, винилиденхлорид). Из него получают волокна с повышенной термостойкостью. Обычно это соединение подвергают сополимеризации с винилхлоридом: Так получаются сополимеры на основе 1,1 — дихлорэтена. Поливинилхлоридные волокна устойчивы к кислотам и щелочам. Кроме того, они отличаются прочностью в мокром состоянии и негорючестью. Эти свойства особенно ценны для защитной одежды, уплотнений, фильтровальных тканей, рыболовных сетей, пожарных шлангов, канатов, театральных декораций и др. Материал вилан-вэше из поливинилхлоридного волокна, изготовляемый в ГДР на фабрике в Вольфене, хорошо удерживает тепло. Белье из него при ношении накапливает высокий электростатический заряд и поэтому особенно рекомендуется тем, кто страдает ревматизмом (Подобными лечебными свойствами обладают изделия, выпускаемые в нашей стране из поливинилхлоридного волокна под названием хлорин. — Прим. перев.). Правда, вследствие низкой температуры размягчения поливинилхлоридных волокон (от 80 до 90 °C) одежду из этой ткани нельзя кипятить и гладить.
В ГДР производство поливинилхлоридных волокон достигло такого уровня, что она может полностью удовлетворить потребности не только свои, но и двух соседних социалистических стран — Польши и Чехословакии.
К группе полиамидных волокон относятся дедерон и найлон (В нашей стране им соответствуют названия капрон и анид. — Прим. перев.). В их строении есть некоторое сходство с простыми белками — протеинами:
— NH — CHR1—СО — NH — CHR2—СО— фрагмент молекулы белка (полипептидная цепь), R1 и R2 — боковые цепи
[-NH-СН2)5– СО-]n дедерон
[— СО — (СН2)4_СО — NH — (СН2)6– NH-]n найлон
Напомним, что разложение дедерона при нагревании сопровождается характерным запахом паленых волос. В качестве исходного мономера для получения дедерона используется белое кристаллическое вещество— капролактам.